A hybrid-system approach using a low-gain Yb:YAG single crystal booster amplifier behind a state-of-the-art industrial high-power femtosecond fiber system is studied to significantly increase the output pulse energy of the fiber amplifier. With this system, more than 60 W of average power is demonstrated at 100 kHz for pulse duration of 400 fs, corresponding to an energy per pulse of 600 µJ. Reducing the repetition rate, the energy is increased up to 2.5 mJ (before compression), which corresponds to the limitation due to laser damage threshold of the optical coatings. To scale further the energy, passive divided-pulse amplification is then implemented at the entrance of the bulk amplifier. Using this geometry, a safe nominal operating point is presented with output pulse energies of 3 mJ before and 2.3 mJ after compression and with a pulse duration of 520 fs, corresponding to a peak power of 4.4 GW.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.24.009896 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!