Robust Support Vector Machines for Classification with Nonconvex and Smooth Losses.

Neural Comput

Department of Electrical Engineering, ESAT-STADIUS, KU Leuven, 3000 Leuven, Belgium

Published: June 2016

This letter addresses the robustness problem when learning a large margin classifier in the presence of label noise. In our study, we achieve this purpose by proposing robustified large margin support vector machines. The robustness of the proposed robust support vector classifiers (RSVC), which is interpreted from a weighted viewpoint in this work, is due to the use of nonconvex classification losses. Besides the robustness, we also show that the proposed RSCV is simultaneously smooth, which again benefits from using smooth classification losses. The idea of proposing RSVC comes from M-estimation in statistics since the proposed robust and smooth classification losses can be taken as one-sided cost functions in robust statistics. Its Fisher consistency property and generalization ability are also investigated. Besides the robustness and smoothness, another nice property of RSVC lies in the fact that its solution can be obtained by solving weighted squared hinge loss-based support vector machine problems iteratively. We further show that in each iteration, it is a quadratic programming problem in its dual space and can be solved by using state-of-the-art methods. We thus propose an iteratively reweighted type algorithm and provide a constructive proof of its convergence to a stationary point. Effectiveness of the proposed classifiers is verified on both artificial and real data sets.

Download full-text PDF

Source
http://dx.doi.org/10.1162/NECO_a_00837DOI Listing

Publication Analysis

Top Keywords

support vector
16
classification losses
12
robust support
8
vector machines
8
large margin
8
robustness proposed
8
proposed robust
8
smooth classification
8
robust
4
vector
4

Similar Publications

Infrared absorption spectroscopy and surface-enhanced Raman spectroscopy were integrated into three data fusion strategies-hybrid (concatenated spectra), mid-level (extracted features from both datasets) and high-level (fusion of predictions from both models)-to enhance the predictive accuracy for xylazine detection in illicit opioid samples. Three chemometric approaches-random forest, support vector machine, and -nearest neighbor algorithms-were employed and optimized using a 5-fold cross-validation grid search for all fusion strategies. Validation results identified the random forest classifier as the optimal model for all fusion strategies, achieving high sensitivity (88% for hybrid, 92% for mid-level, and 96% for high-level) and specificity (88% for hybrid, mid-level, and high-level).

View Article and Find Full Text PDF

Objective: This study aims to assess the performance of machine learning (ML) techniques in optimising nurse staffing and evaluating the appropriateness of nursing care delivery models in hospital wards. The primary outcome measures include the adequacy of nurse staffing and the appropriateness of the nursing care delivery system.

Background: Historical and current healthcare challenges, such as nurse shortages and increasing patient acuity, necessitate innovative approaches to nursing care delivery.

View Article and Find Full Text PDF

This study aimed to evaluate the ability of the preoperative Hemoglobin, Albumin, Lymphocyte count, and Platelet (HALP) score to predict lymph node metastasis (LNM) in patients with rectal cancer (RC) and improve prediction accuracy by incorporating clinical parameters. Data from 263 patients with RC were analyzed. The receiver operating characteristic (ROC) curve was used to determine the optimal cutoff value (OCV) for the HALP score in predicting LNM.

View Article and Find Full Text PDF

Background: The cotton jassid, Amrasca biguttula, a dangerous and polyphagous pest, has recently invaded the Middle East, Africa and South America, raising concerns about the future of cotton and other food crops including okra, eggplant and potato. However, its potential distribution remains largely unknown, posing a challenge in developing effective phytosanitary strategies. We used an ensemble model of six machine-learning algorithms including random forest, maxent, support vector machines, classification and regression tree, generalized linear model and boosted regression trees to forecast the potential distribution of A.

View Article and Find Full Text PDF

The efficacy and safety of drugs are closely related to the geographical origin and quality of the raw materials. This study focuses on using near-infrared hyperspectral imaging (NIR-HSI) combined with machine learning algorithms to construct content prediction models and origin identification models to predict the components and origin of Radix Paeoniae Rubra (RPR). These models are quick, non-destructive, and accurate for assessing both component content and origin.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!