A laser Doppler velocimetry (LDV) sensor using the edge-filter enhanced self-mixing interferometry (ESMI) is presented based on speed measurements of single microparticles. The ESMI detection utilizes an acetylene edge-filter that maps the frequency modulation of a semiconductor laser into an intensity modulation as the laser wavelength is tuned to the steep edge of the absorption profile. In this work, the ESMI signal was analyzed for aerosol particles of different sizes from 1 μm to 10 μm at a distance of 2.5 m. At this operation range, the signal from single particles of all sizes was successfully acquired enabling particle velocity measurements through the Doppler shifted frequency along the beam axis. For the particular case of 10 μm particles, single aerosol particles were still detected at an unprecedented range of 10 m. A theoretical treatment describing the relation between Mie scattering theory and the self-mixing phenomenon on single-particle detection is presented supporting the experimental results. The results show that the edge-filter enhanced self-mixing technique opens new possibilities for self-mixing detection where longer ranges, lower backscattering laser powers and higher velocities are involved. For example, it can be used as a robust and inexpensive anemometer for LDV applications for airflows with low-number density of microparticles.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.24.008886DOI Listing

Publication Analysis

Top Keywords

edge-filter enhanced
12
enhanced self-mixing
12
single microparticles
8
self-mixing interferometry
8
aerosol particles
8
particles sizes
8
self-mixing
5
detection
4
detection single
4
microparticles airflows
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!