An air-core fiber imposed by torsion is investigated in this paper. We refer to this kind of fiber as twisted air-core fiber (TAF). It has been demonstrated that the eigenstates of the TAF consist of guided optical vortex waves with different propagation constants of a different effective index. With the increase of the twist rate, TAF could separate the OAM modes which are near degenerate or degenerate in the air-core fiber. The separation of OAM modes in TAF is conductive to ultralong distance propagation with low crosstalk. TAF could be considered as an ideal candidate fiber for OAM based optical communication. Moreover, we investigated the twisted air-core photonic crystal fiber (TAPCF) which can improve the relative energy distribution of the OAM modes. Compared with TAF, more energy is located in the ring shaped core, which is conductive to ultralong distance propagation. TAF and TAPCF are of potential interest for increasing channel capacity in optical telecommunications, and the result is also of interest to the photonic crystal community.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.24.008310 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!