A highly birefringent polarization-maintaining chalcogenide microstructured optical fiber (MOF) covering the 3-8.5 µm wavelength range has been realized for the first time. The fiber cross-section consists of 3 rings of circular air holes with 2 larger holes adjacent to the core. Birefringence properties are calculated by using the vector finite-element method and are compared to the experimental ones. The group birefringence is 1.5x10 and fiber losses are equal to 0.8 dB/m at 7.55 µm.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.24.007977 | DOI Listing |
Inorg Chem
January 2025
College of Physics, Qingdao University, National Demonstration Center for Experiment Applied Physics Education (Qingdao University), Qingdao Broadband Terahertz Spectroscopy Technology Engineering Research Center (Qingdao University), Qingdao 266071, China.
As promising optoelectronic functional materials in the short-wavelength spectral region, such as ultraviolet (UV) and deep UV, phosphates have recently received increased attention. However, phosphate materials commonly suffer from limited birefringence owing to the highly symmetrical PO tetrahedra. We herein report a layered tin(II) phosphate with improved birefringence.
View Article and Find Full Text PDFChem Sci
January 2025
Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University Nanning Guangxi 530004 China
Acentric crystalline materials are the cornerstone of numerous cutting-edge technologies and have been highly sought-after, but they are difficult to construct controllably. Herein, by introducing a new p-block element to break the symmetrical environment of the d transition metal in the centric matrix TiTeO, a novel acentric tellurite sulfate, namely Ti(TeO)(SO), was successfully constructed. In its structure, two types of p-block element-centered oxo-anionic groups, [TeO] and [SO], endow [TiO] with an out-of-center distortion along the local C[111] direction, which is rare in titanium oxides containing a lone-pair cation.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Functional Crystals Lab, Key Laboratory of Functional Crystals and Laser Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
Tetrahedral halides with broad transparency and large second harmonic effects have the potential to serve as mid-infrared wide-bandgap materials with balanced nonlinear-optical (NLO) properties. However, their regular tetrahedral motifs tend to exhibit low optical birefringence (Δ < 0.03) due to limited structural anisotropy, which constrains their practical phase-matched capability.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, China.
High birefringence nematic liquid crystals are particularly demanded for adaptive optics applications in the infrared spectrum because it enable a thinner cell gap for achieving fast response time and improved diffraction efficiency. The emerging ferroelectric nematic liquid crystals have attracted widespread interest in soft matter due to their unique combination of ferroelectricity and fluidity. However, the birefringence, which is one of the most important optical parameters in electro-optic devices, is not large enough (<0.
View Article and Find Full Text PDFACS Appl Opt Mater
December 2024
School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245, United States.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!