The short- and long-term influences of ferric iron (Fe(III)) on nutrients removal and nitrous oxide (N2O) emission during SNDPR process were evaluated. According to the continuous cycle experiments, it was concluded that the addition of Fe(III) could lower the nitrogen removal of the following cycle during SNDPR process, which was mainly induced by the chemical removal of phosphorus. However, the impacts were transitory, and simultaneous nitrogen and phosphorus removal would recover from the inhibition of Fe(III) after running certain cycles. Moreover, the addition of Fe(III) could stimulate N2O emission transitorily during SNDPR process. However, if Fe(III) was added into reactor continuously, the nitrogen removal would be improved, especially at low Fe load condition. It was because that the activity of NO reductase was enhanced by the addition of Fe. However, the low Fe load in reactor would induce more N2O emission. When Fe(III) load was 40 mg/L in the reactor, the N2O yield was 10 % higher than control. The TN removal was weakened when Fe(III) load reached to 60 mg/L, and the N2O yield was lower than control, due to the inhibition of the high Fe load on denitrification enzymes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-016-6758-2 | DOI Listing |
Glob Chang Biol
January 2025
Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, People's Republic of China.
Conservation agriculture, which involves minimal soil disturbance, permanent soil cover, and crop rotation, has been widely adopted as a sustainable agricultural practice globally. However, the effects of conservation agriculture practices on soil NO emissions and crop yield vary based on geography, management methods, and the duration of implementation, which has hindered its widespread scientific application. In this study, we assessed the impacts of no-tillage (NT), both individually and in combination with other conservation agriculture principles, on soil NO emissions and crop yields worldwide, based on 1270 observations from 86 peer-reviewed articles.
View Article and Find Full Text PDFSci Rep
January 2025
College of Ecology and Environment, Hainan University, Haikou, 570228, China.
Agroforestry systems are known to enhance soil health and climate resilience, but their impact on greenhouse gas (GHG) emissions in rubber-based agroforestry systems across diverse configurations is not fully understood. Here, six representative rubber-based agroforestry systems (encompassing rubber trees intercropped with arboreal, shrub, and herbaceous species) were selected based on a preliminary investigation, including Hevea brasiliensis intercropping with Alpinia oxyphylla (AOM), Alpinia katsumadai (AKH), Coffea arabica (CAA), Theobroma cacao (TCA), Cinnamomum cassia (CCA), and Pandanus amaryllifolius (PAR), and a rubber monoculture as control (RM). Soil physicochemical properties, enzyme activities, and GHG emission characteristics were determined at 0-20 cm soil depth.
View Article and Find Full Text PDFBioresour Technol
January 2025
Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044 China. Electronic address:
Iron-carbon (Fe-C) based biofilters have shown significant advantages in treating mariculture wastewater by facilitating the mixotrophic heterotrophic nitrification-aerobic denitrification (HNAD) process. However, the effects of Fe-C materials and varying carbon-to-nitrogen (C/N) ratios on N removal and C reduction performance remain insufficiently explored. This study demonstrated that the Fe-C biofilter (R-Fe) achieved significantly higher NO-N removal efficiency (65.
View Article and Find Full Text PDFBiosensors (Basel)
January 2025
Department of Chemistry and Materials, Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda 386-8567, Nagano, Japan.
Nitrogen-based fertilizers are crucial in agriculture for maintaining soil health and increasing crop yields. Soil microorganisms transform nitrogen from fertilizers into NO3--N, which is absorbed by crops. However, some nitrogen is converted to nitrous oxide (NO), a greenhouse gas with a warming potential about 300-times greater than carbon dioxide (CO).
View Article and Find Full Text PDFSci Total Environ
January 2025
State Key Laboratory of Marine Resource Utilization in South China Sea, School of Ecology, School of Marine Science and Engineering, Hainan University, Haikou, Hainan, China; Collaborative Innovation Center of Marine Science and Technology, Hainan University, Haikou, Hainan, China. Electronic address:
The mangrove ecosystems store a significant amount of "blue carbon" to mitigate global climate change, but also serve as hotspots for greenhouse gases (GHGs: CO, CH and NO) production. The CH and NO emissions offset mangrove carbon benefits, however, the extent of this effect remains inadequately quantified. By applying the 36 h time-series observations and mapping cruises, here we investigated the spatial and temporal distribution of GHGs and their fluxes in Dongzhaigang (DZG) bay, the largest mangrove ecosystem in China, at tidal and monthly scales.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!