We present a broadband and efficient short-range plasmonic directional coupler design, for the delivery and collection of deeply sub-wavelength radiation to tapered plasmonic nanowires. We show a proof-of-concept design using a planar geometry operating at wavelengths between 1.2 -2.4 μm, showing that the propagation characteristics predicted by an Eigenmode analysis are in excellent agreement with finite element simulations. This analytical formulation is straightforward to implement and immediately provides the power-exchange properties of hybrid plasmonic waveguides. An investigation of both waveguide delivery and collection performance to and from a plasmonic nano-tip is performed. We show that this design strategy can be straightforwardly adapted to a realistic hybrid fiber geometry, containing wire diameters more than one order of magnitude larger than the planar geometries, with important applications in all-fiber plasmonic superfocussing, and nonlinear plasmonics.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.24.007507DOI Listing

Publication Analysis

Top Keywords

broadband efficient
8
hybrid fiber
8
delivery collection
8
plasmonic
5
efficient directional
4
directional coupling
4
coupling short-range
4
short-range plasmons
4
plasmons hybrid
4
fiber nanotips
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!