Introduction: Lassa virus (LASV), the most prominent human pathogen of the Arenaviridae, is transmitted to humans from infected rodents and can cause Lassa Fever (LF). The sizeable disease burden in West Africa, numerous imported LF cases worldwide, and the possibility that LASV can be used as an agent of biological warfare make a strong case for vaccine development. There are no licensed LASV vaccines and the antiviral treatment is limited to an off-label use of ribavirin that is only partially effective.
Areas Covered: LASV vaccine development is hampered by high cost of biocontainment requirement, the absence of appropriate small animal models, genetic diversity of LASV species, and by high HIV-1 prevalence in LASV endemic areas. Over the past 15 years several vaccine platforms have been developed. Natural history of LASV and pathogenesis of the disease provide strong justification for replication-competent (RC) vaccine as one of the most feasible approaches to control LF. Development of LASV vaccine candidates based on reassortant, recombinant, and alphavirus replicon technologies is covered in this review. Expert commentary: Two lead RC vaccine candidates, reassortant ML29 and recombinant VSV/LASV, have been successfully tested in non-human primates and have been recommended by international vaccine experts for rapid clinical development. Both platforms have powerful molecular tools to further secure safety, improve immunogenicity, and cross-protection. These platforms are well positioned to design multivalent vaccines to protect against all LASV strains citculatrd in West Africa. The regulatory pathway of Candid #1, the first live-attenuated arenaviral vaccine against Argentine hemorrhagic, will be a reasonable guideline for LASV vaccine efficacy trials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/14760584.2016.1184575 | DOI Listing |
Viruses
January 2025
Department of Immunology and Microbiology, Scripps Research Institute, La Jolla, CA 92037, USA.
Lassa fever (LF), a viral hemorrhagic fever disease with a case fatality rate that can be over 20% among hospitalized LF patients, is endemic to many West African countries. Currently, no vaccines or therapies are specifically licensed to prevent or treat LF, hence the significance of developing therapeutics against the mammarenavirus Lassa virus (LASV), the causative agent of LF. We used in silico docking approaches to investigate the binding affinities of 2015 existing drugs to LASV proteins known to play critical roles in the formation and activity of the virus ribonucleoprotein complex (vRNP) responsible for directing replication and transcription of the viral genome.
View Article and Find Full Text PDFVirol J
December 2024
Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada.
Lassa virus, the cause of deadly Lassa fever, is endemic in West Africa, where thousands of cases occur on an annual basis. Nigeria continues to report increasingly severe outbreaks of Lassa Fever each year and there are currently no approved vaccines or therapeutics for the prevention or treatment of Lassa Fever. Given the high burden of disease coupled with the potential for further escalation due to climate change the WHO has listed Lassa virus as a priority pathogen with the potential to cause widespread outbreaks.
View Article and Find Full Text PDFJ Gen Virol
December 2024
Laboratory of Emerging Viral Diseases, International Research Center for Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan.
Lassa virus (LASV) is an Old World (OW) mammarenavirus that causes Lassa fever, a life-threatening acute febrile disease endemic in West Africa. Lymphocytic choriomeningitis virus (LCMV) is a worldwide-distributed, prototypic OW mammarenavirus of clinical significance that has been largely neglected as a human pathogen. No licensed OW mammarenavirus vaccines are available, and the current therapeutic option is limited to the off-label use of ribavirin, which offers only partial efficacy.
View Article and Find Full Text PDFCommun Med (Lond)
November 2024
Inovio Pharmaceuticals Inc., Plymouth Meeting, PA, USA.
Background: We have previously developed a DNA-based vaccine, INO-4500, encoding the Lassa lineage IV glycoprotein precursor. INO-4500, when delivered with electroporation, elicited humoral and cellular responses, and conferred 100% protection in cynomolgus non-human primates. Here, we expanded the characterization of INO-4500 assessing immunogenicity and protective efficacy of lower doses and single immunization, and the durability of immune responses.
View Article and Find Full Text PDFbioRxiv
November 2024
Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037 USA.
Lassa virus (LASV), an arenavirus endemic to West Africa, poses a significant public health threat due to its high pathogenicity and expanding geographic risk zone. LASV glycoprotein complex (GPC) is the only known target of neutralizing antibodies, but its inherent metastability and conformational flexibility have hindered the development of GPC-based vaccines. We employed a variant of AlphaFold2 (AF2), called subsampled AF2, to generate diverse structures of LASV GPC that capture an array of potential conformational states using MSA subsampling and dropout layers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!