Acousto-optic deflectors (AODs) arranged in series and driven with linearly chirped frequencies can rapidly focus and tilt optical wavefronts, enabling high-speed 3D random access microscopy. Non-linearly chirped acoustic drive frequencies can also be used to shape the optical wavefront allowing a range of higher-order aberrations to be generated. However, to date, wavefront shaping with AODs has been achieved by using single laser pulses for strobed illumination to 'freeze' the moving acoustic wavefront, limiting voxel acquisition rates. Here we show that dynamic wavefront shaping can be achieved by applying non-linear drive frequencies to a pair of AODs with counter-propagating acoustic waves, which comprise a cylindrical acousto-optic lens (AOL). Using a cylindrical AOL we demonstrate high-speed continuous axial line scanning and the first experimental AOL-based correction of a cylindrical lens aberration at 30 kHz, accurate to 1/35 of a wave at 800 nm. Furthermore, we develop a model to show how spherical aberration, which is the major aberration in AOL-based remote-focusing systems, can be partially or fully corrected with AOLs consisting of four or six AODs, respectively.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6145446 | PMC |
http://dx.doi.org/10.1364/OE.24.006283 | DOI Listing |
We present the first, to our knowledge, metasurface holographic display method with exceptional fidelity and minimal edge noise, based on highly uniform flat-top light generated by a digital micromirror device (DMD). Based on the error-diffusion algorithm and iterative refinement process, the amplitude distribution of the initial Gaussian light was dynamically closed-loop modulated, and the standard difference of the intensity of the 3 mm diameter center flat-top beam was reduced to less than 3.4%.
View Article and Find Full Text PDFiScience
January 2025
Department of Artificial Intelligence, Hanyang University, Seoul 04763, South Korea.
We present a Fourier neural operator (FNO)-based surrogate solver for the efficient optimization of wavefronts in tunable metasurface controls. Existing methods, including the Gerchberg-Saxton algorithm and the adjoint optimization, are often computationally demanding due to their iterative processes, which require numerical simulations at each step. Our surrogate solver overcomes this limitation by providing highly accurate gradient estimations with respect to changes in tunable meta-atoms without the need for direct simulations.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Research Center of Applied Electromagnetics, Nanjing University of Information Science and Technology, Nanjing 210044, China.
We present a novel photoreconfigurable metasurface designed for independent and efficient control of electromagnetic waves with identical incident polarization and frequency across the entire spatial domain. The proposed metasurface features a three-layer architecture: a top layer incorporating a gold circular split ring resonator (CSRR) filled with perovskite material and dual -shaped perovskite resonators; a middle layer of polyimide dielectric; and a bottom layer comprising a perovskite substrate with an oppositely oriented circular split ring resonator filled with gold. By modulating the intensity of a laser beam, we achieve autonomous manipulation of incident circularly polarized terahertz waves in both transmission and reflection modes.
View Article and Find Full Text PDFSci Rep
January 2025
Hannover Centre for Optical Technologies (HOT), Leibniz University Hannover, Hannover, Germany.
Hyperspectral imaging (HSI) systems acquire images with spectral information over a wide range of wavelengths but are often affected by chromatic and other optical aberrations that degrade image quality. Deconvolution algorithms can improve the spatial resolution of HSI systems, yet retrieving the point spread function (PSF) is a crucial and challenging step. To address this challenge, we have developed a method for PSF estimation in HSI systems based on computed wavefronts.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Departamento de Física e Astronomia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal and INESC TEC, Centre of Applied Photonics, Rua do Campo Alegre 687, 4169-007 Porto, Portugal.
Easily accessible through tabletop experiments, paraxial fluids of light are emerging as promising platforms for the simulation and exploration of quantumlike phenomena. In particular, the analogy builds on a formal equivalence between the governing model for a Bose-Einstein condensate under the mean-field approximation and the model of laser propagation inside nonlinear optical media under the paraxial approximation. Yet, the fact that the role of time is played by the propagation distance in the analog system imposes strong bounds on the range of accessible phenomena due to the limited length of the nonlinear medium.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!