We propose a procedure for characterizing fabrication deviations within a chip and among different chips in a wafer in silicon photonics technology. In particular, independent measurements of SOI thickness and waveguide width deviations can be mapped through the wafer, allowing a precise and non-destructive characterization of how these variations are distributed along the surface of the wafer. These deviations are critical for most wavelength-dependent integrated devices, like microring resonators, filters, etc. We also show that the technique allows for the characterization of proximity effects.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.24.006265 | DOI Listing |
Light Sci Appl
January 2025
Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany.
High-power tunable lasers are intensely pursued due to their vast application potential such as in telecom, ranging, and molecular sensing. Integrated photonics, however, is usually considered not suitable for high-power applications mainly due to its small size which limits the energy storage capacity and, therefore, the output power. In the late 90s, to improve the beam quality and increase the stored energy, large-mode-area (LMA) fibers were introduced in which the optical mode area is substantially large.
View Article and Find Full Text PDFNature
January 2025
imec, Leuven, Belgium.
Silicon photonics is a rapidly developing technology that promises to revolutionize the way we communicate, compute and sense the world. However, the lack of highly scalable, native complementary metal-oxide-semiconductor (CMOS)-integrated light sources is one of the main factors hampering its widespread adoption. Despite considerable progress in hybrid and heterogeneous integration of III-V light sources on silicon, monolithic integration by direct epitaxy of III-V materials remains the pinnacle of cost-effective on-chip light sources.
View Article and Find Full Text PDFACS Omega
December 2024
Faculty UnB Planaltina, Materials Science Postgraduate Program, University of Brasília, Brasília, Federal District 73345-010, Brazil.
Two-dimensional (2D) silicon-based materials have garnered significant attention for their promising properties, making them suitable for various advanced technological applications. Here, we present Irida-Silicene (ISi), a novel 2D silicon allotrope inspired by Irida-Graphene (IG), which was recently proposed and is entirely composed of carbon atoms. ISi exhibits a buckled structure composed of 3-6-8 membered rings, unlike its planar carbon counterpart.
View Article and Find Full Text PDFNat Commun
December 2024
Department of Electronic Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
Reservoir computing (RC) is a powerful machine learning algorithm for information processing. Despite numerous optical implementations, its speed and scalability remain limited by the need to establish recurrent connections and achieve efficient optical nonlinearities. This work proposes a streamlined photonic RC design based on a new paradigm, called next-generation RC, which overcomes these limitations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!