In order to obtain very precise measurements of the position of agents located at a considerable distance using a sensor system based on position sensitive detectors (PSD), it is necessary to analyze and mitigate the factors that generate substantial errors in the system's response. These sources of error can be divided into electronic and geometric factors. The former stem from the nature and construction of the PSD as well as the performance, tolerances and electronic response of the system, while the latter are related to the sensor's optical system. Here, we focus solely on the electrical effects, since the study, analysis and correction of these are a prerequisite for subsequently addressing geometric errors. A simple calibration method is proposed, which considers PSD response, component tolerances, temperature variations, signal frequency used, signal to noise ratio (SNR), suboptimal operational amplifier parameters, and analog to digital converter (ADC) quantitation SNRQ, etc. Following an analysis of these effects and calibration of the sensor, it was possible to correct the errors, thus rendering the effects negligible, as reported in the results section.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4883310PMC
http://dx.doi.org/10.3390/s16050619DOI Listing

Publication Analysis

Top Keywords

analysis calibration
4
calibration sources
4
sources electronic
4
electronic error
4
psd
4
error psd
4
psd sensor
4
response
4
sensor response
4
response order
4

Similar Publications

Purpose: Social determinants of health including neighborhood socioeconomic status, have been established to play a profound role in overall access to care and outcomes in numerous specialized disease entities. To provide glioblastoma multiforme (GBM) patients with high-quality care, it is crucial to identify predictors of hospital length of stay (LOS), discharge disposition, and access to postoperative adjuvant chemoradiation. In this study, we incorporate a novel neighborhood socioeconomic status index (NSES) and develop three predictive algorithms for assessing post-operative outcomes in GBM patients, offering a tool for preoperative risk stratification of GBM patients.

View Article and Find Full Text PDF

To investigate the potential of an MRI-based radiomic model in distinguishing malignant prostate cancer (PCa) nodules from benign prostatic hyperplasia (BPH)-, as well as determining the incremental value of radiomic features to clinical variables, such as prostate-specific antigen (PSA) level and Prostate Imaging Reporting and Data System (PI-RADS) score. A restrospective analysis was performed on a total of 251 patients (training cohort, n = 119; internal validation cohort, n = 52; and external validation cohort, n = 80) with prostatic nodules who underwent biparametric MRI at two hospitals between January 2018 and December 2020. A total of 1130 radiomic features were extracted from each MRI sequence, including shape-based features, gray-level histogram-based features, texture features, and wavelet features.

View Article and Find Full Text PDF

Home Urine Dipstick Screening for Bladder and Kidney Cancer in High-Risk Populations in England: A Microsimulation Study of Long-Term Impact and Cost-Effectiveness.

Pharmacoeconomics

January 2025

Sheffield Centre for Health and Related Research (SCHARR), School of Medicine and Population Health, The University of Sheffield, Regent Court, 30 Regent Street, Sheffield, UK.

Background: Testing high-risk populations for non-visible haematuria may enable earlier detection of bladder cancer, potentially decreasing mortality. This research aimed to assess the cost-effectiveness of urine dipstick screening for bladder cancer in high-risk populations in England.

Methods:  A microsimulation model developed in R software was calibrated to national incidence data by age, sex and stage, and validated against mortality data.

View Article and Find Full Text PDF

Objective: Construction a troublemaking risk assessment tool to predict the risk of troublemaking for patients with severe mental disorders in the community of China.

Methods: 28,000 cases registered in the Jiangsu Provincial Severe Mental Disorder Management System from January 2017 to December 2019 were collected. The risk factors of troublemaking among patients with severe mental disorders in the community were analyzed through Logistic regression analysis, then the troublemaking risk assessment tool was established and verified.

View Article and Find Full Text PDF

Multi-Planar Cervical Motion Dataset: IMU Measurements and Goniometer.

Sci Data

January 2025

Department of Anatomy and Anthropology, Faculty of Medical & Health Sciences, Tel- Aviv University, Tel-Aviv, 699780, Israel.

This data descriptor presents a comprehensive and replicable dataset and method for calculating the cervical range of motion (CROM) utilizing quaternion-based orientation analysis from Delsys inertial measurement unit (IMU) sensors. This study was conducted with 14 participants and analyzed 504 cervical movements in the Sagittal, Frontal and Horizontal planes. Validated against a Universal Goniometer and tested for reliability and reproducibility.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!