A flower-like nanobioreactor was prepared for resolution of ibuprofen in organic solvents. Ultrasound irradiation has been used to improve the enzyme performance of APE1547 (a thermophilic esterase from the archaeon Aeropyrum pernix K1) in the enantioselective esterification. Under optimum reaction conditions (ultrasound power, 225 W; temperature, 45 °C; water activity, 0.21), the immobilized APE1547 showed an excellent catalytic performance (enzyme activity, 13.26 μmol/h/mg; E value, 147.1). After ten repeated reaction batches, the nanobioreactor retained almost 100% of its initial enzyme activity and enantioselectivity. These results indicated that the combination of the immobilization method and ultrasound irradiation can enhance the enzyme performance dramatically.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6273997PMC
http://dx.doi.org/10.3390/molecules21050565DOI Listing

Publication Analysis

Top Keywords

enantioselective esterification
8
flower-like nanobioreactor
8
ultrasound irradiation
8
enzyme performance
8
enzyme activity
8
ultrasound-assisted enantioselective
4
esterification ibuprofen
4
ibuprofen catalyzed
4
catalyzed flower-like
4
nanobioreactor flower-like
4

Similar Publications

Application of β-Keto Acylpyrazoles as 2C Synthons in Asymmetric Cyclizations of -Hydroxychalcones: Stereoselective Construction of -3,4-Dihydrocoumarins.

J Org Chem

December 2024

Institute and State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, P. R. China.

An asymmetric tandem esterification/Michael addition reaction of β-keto acylpyrazoles with -hydroxychalcones has been established under the catalysis of a bifunctional squaramide-tertiary amine. A wide variety of biorelevant 3,4-dihydrocoumarin derivatives were generally obtained in high yields (up to 93%) with excellent diastereo- and enantioselectivities (>19:1 dr, up to 93% ee) under mild reaction conditions. This reaction represents the successful application of β-keto acylpyrazoles as 2C building blocks in catalytic asymmetric cyclizations.

View Article and Find Full Text PDF

Enantiomerically Pure Helical Bilayer Nanographenes: A Straightforward Chemical Approach.

J Am Chem Soc

December 2024

Departamento de Química Orgánica I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain.

Article Synopsis
  • - The study highlights the potential of molecular nanographenes for next-gen optoelectronics, particularly focusing on chiral versions that show unique optical properties but are challenging to synthesize in pure forms.
  • - Traditional methods for obtaining chiral nanographenes involve costly HPLC for separating racemic mixtures, while only limited examples of direct enantioselective synthesis exist in literature.
  • - The authors propose a simpler chemical method for chiral resolution of helical bilayer nanographenes, utilizing BINOL and camphorsulfonyl chloride, leading to scalable production of enantiomerically pure nanographenes without relying on HPLC.
View Article and Find Full Text PDF

Bienzymatic Dynamic Kinetic Resolution of Secondary Alcohols by Esterification/Racemization in Water.

Angew Chem Int Ed Engl

November 2024

Laboratory of Biocatalysis and Biotransformation, Department of Drugs Technology and Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Koszykowa 75, 00-662, Warsaw, Poland.

Dynamic kinetic resolution (DKR) is a key method used to prepare optically pure compounds in 100 % theoretical yield starting from racemic substrates by combining the interconversion of substrate enantiomers with an enantioselective transformation. Various chemoenzymatic DKR approaches have been developed to deracemize secondary alcohols, typically requiring an organic solvent to facilitate enantioselective acylation, primarily catalyzed by lipases, alongside racemization mediated by an achiral, non-enzymatic catalyst. Achieving both steps in an aqueous solution remained elusive.

View Article and Find Full Text PDF

Photocatalysis Meets Copper Catalysis: A New Opportunity for Asymmetric Multicomponent Radical Cross-Coupling Reactions.

Acc Chem Res

December 2024

Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China.

Article Synopsis
  • Radical-mediated cross-coupling reactions are a powerful method for creating diverse molecular structures, but they face challenges in controlling reaction pathways and selectivity due to the high reactivity of radicals.
  • The use of visible-light photoredox catalysis combined with chiral copper catalysts can enhance control over radical species and improve enantioselective reactions.
  • This research focuses on innovative strategies for chiral C-C and C-O bond formation by utilizing dual photoredox/copper catalysis, highlighting the effectiveness of visible light in achieving selectivity in these reactions.
View Article and Find Full Text PDF

Asymmetric Organocatalysed Synthesis of (R)-Mandelic Acid Esters and α-Alkoxy Derivatives from Commercial Sources.

Chemistry

November 2024

Dipartimento di Chimica e Biologia "A. Zambelli", Università di Salerno, Via Giovanni Paolo II, 84081, Fisciano, Italy.

Optically active mandelic acid esters represent a highly valuable class of building blocks in organic synthesis and recurrent motifs embedded in bioactive compounds and drugs. Herein, we provide an enantioselective one-pot synthesis based on Knoevenagel condensation/asymmetric epoxidation/domino ring-opening hydrolysis (DROH) sequence to the crude mandelic acids, which underwent a final esterification step to (R)-methyl mandelates. These products have been obtained in good to high overall yield and enantioselectivity, using commercially and widely available reagents and catalyst including aldehydes, phenylsulfonyl acetonitrile, cumyl hydroperoxide, water and an epi-quinine-derived urea as the organocatalyst.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!