Spatiotemporal dynamics of the nuclear pore complex transport barrier resolved by high-speed atomic force microscopy.

Nat Nanotechnol

Biozentrum and the Swiss Nanoscience Institute, University of Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland.

Published: August 2016

Nuclear pore complexes (NPCs) are biological nanomachines that mediate the bidirectional traffic of macromolecules between the cytoplasm and nucleus in eukaryotic cells. This process involves numerous intrinsically disordered, barrier-forming proteins known as phenylalanine-glycine nucleoporins (FG Nups) that are tethered inside each pore. The selective barrier mechanism has so far remained unresolved because the FG Nups have eluded direct structural analysis within NPCs. Here, high-speed atomic force microscopy is used to visualize the nanoscopic spatiotemporal dynamics of FG Nups inside Xenopus laevis oocyte NPCs at timescales of ∼100 ms. Our results show that the cytoplasmic orifice is circumscribed by highly flexible, dynamically fluctuating FG Nups that rapidly elongate and retract, consistent with the diffusive motion of tethered polypeptide chains. On this basis, intermingling FG Nups exhibit transient entanglements in the central channel, but do not cohere into a tightly crosslinked meshwork. Therefore, the basic functional form of the NPC barrier is comprised of highly dynamic FG Nups that manifest as a central plug or transporter when averaged in space and time.

Download full-text PDF

Source
http://dx.doi.org/10.1038/nnano.2016.62DOI Listing

Publication Analysis

Top Keywords

spatiotemporal dynamics
8
nuclear pore
8
high-speed atomic
8
atomic force
8
force microscopy
8
nups
6
dynamics nuclear
4
pore complex
4
complex transport
4
transport barrier
4

Similar Publications

The evolution of the spatiotemporal relationship between urban economic growth and health resources within the Yangtze River Delta urban agglomeration provides an important context for understanding the regional development dynamics in China. Previous studies focused on equity in health-resource allocation and service efficiency, often overlooking the allometric growth relationships between health resources and economic variables. This study employs an allometric growth model to elucidate the changing interactions between the number of medical beds, doctors, and urban economic indicators in the Yangtze River Delta region from 2009 to 2022.

View Article and Find Full Text PDF

The unique architecture of the liver consists of hepatic lobules, dividing the hepatic features of metabolism into 2 distinct zones, namely the pericentral and periportal zones, the spatial characteristics of which are broadly defined as metabolic zonation. R-spondin3 (Rspo3), a bioactive protein promoting the Wnt signaling pathway, regulates metabolic features especially around hepatic central veins. However, the functional impact of hepatic metabolic zonation, regulated by the Rspo3/Wnt signaling pathway, on whole-body metabolism homeostasis remains poorly understood.

View Article and Find Full Text PDF

Vegetation Types Shift Physiological and Phenological Controls on Carbon Sink Strength in a Coastal Zone.

Glob Chang Biol

January 2025

Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, China.

The carbon sink function performed by the different vegetation types along the environmental gradient in coastal zones plays a vital role in mitigating climate change. However, inadequate understanding of its spatiotemporal variations across different vegetation types and associated regulatory mechanisms hampers determining its potential shifts in a changing climate. Here, we present long-term (2011-2022) eddy covariance measurements of the net ecosystem exchange (NEE) of CO at three sites with different vegetation types (tidal wetland, nontidal wetland, and cropland) in a coastal zone to examine the role of vegetation type on annual carbon sink strength.

View Article and Find Full Text PDF

SUMMARYThe development of multicellularity represents a key evolutionary transition that is crucial for the emergence of complex life forms. Although multicellularity has traditionally been studied in eukaryotes, it originates in prokaryotes. Coordinated aggregation of individual cells within the confines of a colony results in emerging, higher-level functions that benefit the population as a whole.

View Article and Find Full Text PDF

Characterizing dynamic heterogeneities during nanogel degradation.

Soft Matter

January 2025

Department of Materials Science and Engineering, Clemson University, Clemson, South Carolina 29634, USA.

Understanding photodegradation of nanogels is critical for dynamic control of their properties and functionalities. We focus on nanogels formed by end-linking of four-arm polyethylene glycol precursors with photolabile groups and characterize dynamic heterogeneities in these systems during degradation. We use our recently developed dissipative particle dynamics framework that captures the controlled scission of bonds between the precursors and diffusion of degraded fragments at the mesoscale.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!