A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A novel acoustic approach for the characterization of granular activated carbons used in the rum production. | LitMetric

A novel acoustic approach for the characterization of granular activated carbons used in the rum production.

Ultrasonics

Department of Polymer and Carbonaceous Material, Faculty of Chemistry, Wroclaw University of Technology, Gdanska 7/9, 50-344 Wroclaw, Poland. Electronic address:

Published: August 2016

Acoustic analysis and sound patterns recognition techniques have been widely used in many branches of science, however; almost none focused on the characterization of granular activated carbon. A new methodology has been developed in order to characterize activated carbon based on the dynamic analysis in audible spectra of the sound's relative amplitude power produced by water flooded on granular activated carbon. A home-build recording set-up and management of acoustic measurements have been presented and correlated with the results of porous structure of carbons characterized by N2 adsorption. Five samples of granular activated carbons used in the rum production of different exhausted level have been evaluated by both methods. Parameters as the BET surface area and total pore volume showed a satisfactory correlation with acoustic measurement data when the signal is processed at 1000Hz. Three frequencies components of the produced sound were analyzed and related with the porous characteristics. The found relationship gives the possibility to predict and calculate textural parameters of granular activated carbons applying the acoustic technique. This methodology approach opens possibilities in using acoustic experiments for the characterization of high-porosity materials and to determine their exhausted level.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ultras.2016.03.021DOI Listing

Publication Analysis

Top Keywords

granular activated
20
activated carbons
12
activated carbon
12
characterization granular
8
carbons rum
8
rum production
8
exhausted level
8
activated
6
granular
5
acoustic
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!