Effects of combined open kinetic chain and closed kinetic chain training using pulley exercise machines on muscle strength and angiogenesis factors.

J Phys Ther Sci

Laboratory of Exercise Biochemistry, Department of Physical Education, College of Sports Science, Dong-A University: Busan, Republic of Korea.

Published: March 2016

[Purpose] This study investigated the effects of combined open kinetic chain and closed kinetic chain training using pulley exercise machines on muscle strength, anaerobic power, and blood levels of angiogenesis factors. [Subjects and Methods] Twenty male university students were equally divided between control and pulley training groups. The pulley-training group underwent 8 weeks of combined training. Open kinetic chain training consisted of 2 sets of 10 repetitions at 60% of one repetition maximum; closed kinetic chain training consisted of 2 sets of 10 repetitions of resistance exercise using the subject's own body weight. Isokinetic strength (trunk and knee), anaerobic power, vascular endothelial growth factor, angiopoietin-1, angiopoietin-2, and follistatin were analyzed. [Results] After 8 weeks, flexor and extensor muscle strength significantly increased in the trunk and knee; average and peak power also increased significantly. Angiopoietin 1 increased 25% in the control group and 48% in the pulley training group; vascular endothelial growth factor and follistatin increased significantly in the pulley-training group after 8 weeks. [Conclusion] Eight weeks of combined training using pulley exercise machines effectively increased biochemical factors related to muscle growth, as well as muscle strength in the trunk and knees.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4842474PMC
http://dx.doi.org/10.1589/jpts.28.960DOI Listing

Publication Analysis

Top Keywords

kinetic chain
24
chain training
16
muscle strength
16
open kinetic
12
closed kinetic
12
training pulley
12
pulley exercise
12
exercise machines
12
effects combined
8
combined open
8

Similar Publications

Performance, kinetics, and mechanism of 1,2,3-trimethylbenzene biodegradation by a newly isolated marine microalga.

J Environ Manage

January 2025

Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China.

Article Synopsis
  • Recent marine pollution concerns revolve around the accidental spills of toxic C9 aromatics, particularly 1,2,3-trimethylbenzene (1,2,3-TMB), due to its high toxicity and resistance to degradation.
  • A marine diatom, Chaetoceros sp. QG-1, was isolated from Quangang, China, and demonstrated the highest degradation efficiency of 1,2,3-TMB at a concentration of 5 mg/L.
  • The study identified the degradation process, where 1,2,3-TMB is converted into less harmful compounds, involving key enzymes like 2OG Fe(II) oxygenase, thus supporting bioremediation efforts in polluted marine environments
View Article and Find Full Text PDF

Molecular Clip Strategy of Modified Sulfur Cathodes for High-Performance Potassium Sulfur Batteries.

Adv Sci (Weinh)

January 2025

Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau SAR, 999078, China.

Potassium-sulfur (K-S) batteries are severely limited by the sluggish reaction kinetics of the cyclooctasulfur (cyclo-S) electrode with low conductivity, which urgently requires a novel cathode to facilitate activity to improve sulfur utilization. In this study, using the wet chemistry method, the molecular clip of Li is created to replace cyclo-S molecular with the highly active chain-like S molecular. The molecular clip strategy effectively lowers the reaction barrier in potassium-sulfur systems, and the stretching of S─S bonds weakens the binding between sulfur atoms, facilitating the transformation of potassium polysulfides (KPSs).

View Article and Find Full Text PDF

Unraveling the Meaning of Effective Uptake Coefficients in Multiphase and Aerosol Chemistry.

Acc Chem Res

January 2025

Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.

ConspectusReactions of gas phase molecules with surfaces play key roles in atmospheric and environmental chemistry. Reactive uptake coefficients (γ), the fraction of gas-surface collisions that yield a reaction, are used to quantify the kinetics in these heterogeneous and multiphase systems. Unlike rate coefficients for homogeneous gas- or liquid-phase reactions, uptake coefficients are system- and observation-dependent quantities that depend upon a multitude of underlying elementary steps.

View Article and Find Full Text PDF

Self-cleaning applications based on bionic surface designs requires an in-depth understanding of unique and complex wetting and evaporation processes of sessile droplets on natural biosurfaces. To this end, hydrophobic bamboo and Kalanchoe blossfeldiana leaves are excellent candidates for self-cleaning applications, but various properties, such as the heat and mass transfer processes during evaporation, remain unknown. Here, the dynamics of contact angle, radius, and heat and mass transfer during evaporation of sessile droplets on bamboo and Kalanchoe blossfeldiana leaves with roughness in the range 2.

View Article and Find Full Text PDF

Itaconate is an immunomodulatory metabolite that alters mitochondrial metabolism and immune cell function. This organic acid is endogenously synthesized via tricarboxylic acid (TCA) metabolism downstream of TLR signaling. Itaconate-based treatment strategies are being explored to mitigate numerous inflammatory conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!