Whole-Genome Hitchhiking on an Organelle Mutation.

Curr Biol

Laboratory of Genetics, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands.

Published: May 2016

Strong selection on a beneficial mutation can cause a selective sweep, which fixes the mutation in the population and reduces the genetic variation in the region flanking the mutation [1-3]. These flanking regions have increased in frequency due to their physical association with the selected loci, a phenomenon called "genetic hitchhiking" [4]. Theoretically, selection could extend the hitchhiking to unlinked parts of the genome, to the point that selection on organelles affects nuclear genome diversity. Such indirect selective sweeps have never been observed in nature. Here we show that strong selection on a chloroplast gene in the wild plant species Arabidopsis thaliana has caused widespread and lasting hitchhiking of the whole nuclear genome. The selected allele spread more than 400 km along the British railway network, reshaping the genetic composition of local populations. This demonstrates that selection on organelle genomes can significantly reduce nuclear genetic diversity in natural populations. We expect that organelle-mediated genetic draft is a more common occurrence than previously realized and needs to be considered when studying genome evolution.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cub.2016.03.027DOI Listing

Publication Analysis

Top Keywords

strong selection
8
nuclear genome
8
selection
5
whole-genome hitchhiking
4
hitchhiking organelle
4
mutation
4
organelle mutation
4
mutation strong
4
selection beneficial
4
beneficial mutation
4

Similar Publications

Pathways to One Health: Enhancing Inter-Sectoral Collaboration in Pakistan.

Ecohealth

January 2025

Health Services Academy, Chak Shahzad, Park Road, Islamabad, 44000, Pakistan.

One Health is an integrative approach aiming to achieve optimal health outcomes by recognizing the interconnection between humans, animals, and the environment. This study explores the understanding, perspectives, hurdles, and implications of intersectoral collaboration within Pakistan's human health system, focusing on One Health principles. A qualitative phenomenological approach was employed, involving 17 key informant interviews with purposively selected stakeholders from public health, agriculture, veterinary medicine, agriculture and environmental science.

View Article and Find Full Text PDF

Dental maxillary sinus pathology: a CBCT-based case-control study.

Odontology

January 2025

Division of Oral Radiology, Faculdade São Leopoldo Mandic, Rua Dr. José Rocha Junqueira 13 Campinas, São Paulo, 13045-755, Brazil.

This study evaluated the association between dental infection and maxillary sinus pathology, and the influence of age, sex, type of tooth, root proximity to the sinus floor, the condition of the primary maxillary ostium, and the presence of an accessory maxillary ostium in this process. Computed Tomography scans were selected, and upper posterior teeth were evaluated for the presence of apical periodontitis (AP), bone loss with furcation involvement, and endoperiodontal lesion (EPL), subsequently, sinuses were evaluated for mucosal thickening (MT) and opacification of the maxillary sinus (OMS). Logistic regression models were constructed, and Chi-squared and Fisher's tests were applied.

View Article and Find Full Text PDF

Two-dimensional cell membrane chromatography guided screening of myocardial protective compounds from Yindan Xinnaotong soft capsule.

Chin Med

January 2025

State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 639 Longmian Road, Nanjing, 211198, China.

Background: Cell membrane chromatography (CMC) is a biochromatography with a dual function of recognition and separation, offering a distinct advantage in screening bioactive compounds from Chinese medicines (CMs). Yindan Xinnaotong soft capsule (YD), a CM formulation, has been widely utilized in the treatment of cardiovascular disease. However, a comprehensive mapping of the myocardial protective active compounds remains elusive.

View Article and Find Full Text PDF

In this study, a convenient method was proposed for the synthesis of thymine-capped mesoporous silica nanoparticles (MSN) using strong hydrogen bonding in non-protonic solvent. Furthermore, application of the functionalized MSN for the recognition of mercuric ion (Hg) based on a paper-based platform with smartphone-assisted colorimetric detection was developed. The synthesized materials were characterized by techniques including X-ray diffraction (XRD), fourier-transform infrared spectroscopy (FTIR), N adsorption-desorption, particle size analysis, transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and thermogravimetric analysis (TGA).

View Article and Find Full Text PDF

CDK4/6 inhibitors are effective in treating HR/HER2 breast cancer but face limitations due to therapeutic resistance and hematological toxicity, particularly from strong CDK6 inhibition. To address these challenges, designing selective inhibitors targeting specific cyclin-dependent kinases (CDK) members could offer clinical advantages and broaden CDK inhibitor indications. However, the highly conserved binding pockets of CDKs complicate selective targeting.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!