Pharmacological Reprogramming of Fibroblasts into Neural Stem Cells by Signaling-Directed Transcriptional Activation.

Cell Stem Cell

Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA; Roddenberry Center for Stem Cell Biology and Medicine, Gladstone Institutes, San Francisco, CA 94158, USA; Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA. Electronic address:

Published: May 2016

Cellular reprogramming using chemically defined conditions, without genetic manipulation, is a promising approach for generating clinically relevant cell types for regenerative medicine and drug discovery. However, small-molecule approaches for inducing lineage-specific stem cells from somatic cells across lineage boundaries have been challenging. Here, we report highly efficient reprogramming of mouse fibroblasts into induced neural stem cell-like cells (ciNSLCs) using a cocktail of nine components (M9). The resulting ciNSLCs closely resemble primary neural stem cells molecularly and functionally. Transcriptome analysis revealed that M9 induces a gradual and specific conversion of fibroblasts toward a neural fate. During reprogramming specific transcription factors such as Elk1 and Gli2 that are downstream of M9-induced signaling pathways bind and activate endogenous master neural genes to specify neural identity. Our study provides an effective chemical approach for generating neural stem cells from mouse fibroblasts and reveals mechanistic insights into underlying reprogramming processes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4864020PMC
http://dx.doi.org/10.1016/j.stem.2016.03.020DOI Listing

Publication Analysis

Top Keywords

neural stem
16
stem cells
16
fibroblasts neural
8
approach generating
8
mouse fibroblasts
8
neural
7
cells
6
stem
5
pharmacological reprogramming
4
fibroblasts
4

Similar Publications

Multiple sclerosis (MS) is an autoimmune inflammatory demyelinating disease that results in motor, sensory, cognitive, and affective deficits. Hippocampal demyelination, a common occurrence in MS, is linked to impaired cognitive function and mood. Despite this, the precise mechanisms underlying cognitive impairments in MS remain elusive.

View Article and Find Full Text PDF

Amyotrophic lateral sclerosis (ALS) is characterized by dysfunction and loss of upper and lower motor neurons. Several studies have identified structural and functional alterations in the motor neurons before the manifestation of symptoms, yet the underlying cause of such alterations and how they contribute to the progressive degeneration of affected motor neuron networks remain unclear. Importantly, the short and long-term spatiotemporal dynamics of neuronal network activity make it challenging to discern how ALS-related network reconfigurations emerge and evolve.

View Article and Find Full Text PDF

Conversion of silent synapses to AMPA receptor-mediated functional synapses in human cortical organoids.

Neurosci Res

December 2024

Laboratory of Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan; Laboratory of Neural Information Processing, Institute for Advanced Research, Nagoya University, Nagoya, Japan; PRESTO/CREST, Japan Science and Technology Agency, Saitama, Japan. Electronic address:

Despite the crucial role of synaptic connections and neural activity in the development and organization of cortical circuits, the mechanisms underlying the formation of functional synaptic connections in the developing human cerebral cortex remain unclear. We investigated the development of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR)-mediated synaptic transmission using human cortical organoids (hCOs) derived from induced pluripotent stem cells. Two-photon Ca⁺ imaging revealed an increase in the frequency and amplitude of spontaneous activity in hCOs on day 80 compared to day 50.

View Article and Find Full Text PDF

Nitric Oxide-Releasing Mesoporous Hollow Cerium Oxide Nanozyme-Based Hydrogel Synergizes with Neural Stem Cell for Spinal Cord Injury Repair.

ACS Nano

December 2024

Department of Pharmacy, Nanjing Medical Center for Clinical Pharmacy, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China.

Neural stem cell (NSCs) transplantation is a promising therapeutic strategy for spinal cord injury (SCI), but its efficacy is greatly limited by the local inhibitory microenvironment. In this study, based on l-arginine (l-Arg)-loaded mesoporous hollow cerium oxide (AhCeO) nanospheres, we constructed an injectable composite hydrogel (AhCeO-Gel) with microenvironment modulation capability. AhCeO-Gel protected NSCs from oxidative damage by eliminating excess reactive oxygen species while continuously delivering Nitric Oxide to the lesion of SCI in a pathological microenvironment, the latter of which effectively promoted the neural differentiation of NSCs.

View Article and Find Full Text PDF

The neural crest (NC) is an embryonic cell population with high migratory capacity. It contributes to forming several organs and tissues, such as the craniofacial skeleton and the peripheral nervous system of vertebrates. Both pre-migratory and post-migratory NC cells are plastic, adopting multiple differentiation paths by responding to different inductive environmental signals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!