Microtubules, ordinarily cold-labile structures, are made entirely resistant to cold temperature by the presence of substoichiometric amounts of STOP (stable tubule only polypeptide), a microtubule-associated protein. We have produced a monoclonal antibody which specifically recognizes a 145-kDa protein previously implicated in STOP activity in rat brain extracts. An antibody affinity column removes both the 145-kDa protein and STOP activity from solution. A urea eluate from the affinity column contains the 145-kDa protein and exhibits substantial STOP activity. We conclude the 145-kDa protein accounts for all measurable STOP activity in rat neuronal extracts. For this work, we have developed an assay of microtubule cold stability which is generally applicable to the detection of STOP activity in various tissues. Using this assay, we show STOP activity is most abundant in neuronal tissue but is detectable in all tissues tested, with the exception of heart muscle. In all tissues that we have examined, STOP activity elutes as a single peak from heparin affinity columns, and in common with brain STOP, all activity is Ca2+-calmodulin sensitive. The monoclonal antibody recognizes the 145-kDa STOP in rat neuronal extracts but reacts with no protein in active fractions from other tissue. A similar, but not identical, analogue of brain STOP thus appears to be widespread in mammalian tissues.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bi00428a064DOI Listing

Publication Analysis

Top Keywords

145-kda protein
16
monoclonal antibody
12
activity
10
microtubule-associated protein
8
antibody recognizes
8
recognizes 145-kda
8
activity rat
8
affinity column
8
rat neuronal
8
neuronal extracts
8

Similar Publications

Endogenously occurring salts and nonvolatile matrix components in untreated biological surfaces can suppress protein ionization and promote adduct formation, challenging protein identification. Characterization of labile proteins within biological specimens is particularly demanding because additional purification or sample treatment steps can be time-intensive and can disrupt noncovalent interactions. It is demonstrated that the combined use of collision-induced unfolding, tandem mass spectrometry, and bottom-up proteomics improves protein characterization in native surface mass spectrometry (NSMS).

View Article and Find Full Text PDF
Article Synopsis
  • The MET oncogene's tyrosine kinase receptor has an extracellular domain called PSI, which has been previously unexplored in terms of function despite being evolutionarily conserved.
  • Recent experiments reveal that the MET extracellular PSI domain exhibits disulfide isomerase activity, crucial for the maturation process of the MET precursor protein into its active forms, which are involved in signaling pathways.
  • Mutations in the PSI domain hinder the cleavage and maturation of the MET protein, leading to its accumulation in the Golgi apparatus and preventing essential biological processes triggered by its ligand, Hepatocyte Growth Factor (HGF).
View Article and Find Full Text PDF

Rewarding and Antidepressant Properties of Ketamine and Ethanol: Effects on the Brain-Derived Neurotrophic Factor and TrkB and p75 Receptors.

Neuroscience

June 2022

Departamento de Farmacologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo 05508-900, Brasil. Electronic address:

There is a high level of comorbidity between depression and alcohol use disorder. Subanesthetic doses of ketamine induce short-acting and enduring antidepressant effects after a single or a few administrations. Considering such comorbidity, we assessed, in Swiss male mice, if ketamine-induced antidepressant-like effects would alter ethanol's rewarding effects; and, if ethanol pretreatment would alter the rewarding and antidepressant effects of ketamine.

View Article and Find Full Text PDF

Untargeted label-free interrogation of proteins in their functional form directly from their physiological environment promises to transform life sciences research by providing unprecedented insight into their transient interactions with other biomolecules and xenobiotics. Native ambient mass spectrometry (NAMS) shows great potential for the structural analysis of endogenous protein assemblies directly from tissues; however, to date, this has been limited to assemblies of low molecular weight (<20 kDa) or very high abundance (hemoglobin tetramer in blood vessels, RidA homotrimer in kidney cortex tissues). The present work constitutes a step change for NAMS of protein assemblies: we demonstrate the detection and identification of a range of intact endogenous protein assemblies with various stoichiometries (dimer, trimer, and tetramer) from a range of tissue types (brain, kidney, liver) by the use of multiple NAMS techniques.

View Article and Find Full Text PDF

Mucous membrane pemphigoid (MMP), previously called cicatricial pemphigoid, is a rare subepidermal immunobullous disorder that primarily affects the mucous membranes (1,2). MMP is divided into two major subtypes, anti-BP180-type MMP and anti-laminin-332 (previously called laminin 5 or epiligrin) MMP. Anti-laminin-332 MMP is known to be associated with malignant tumors (3), which may cause overexpression of autoantibodies and induce autoimmunity to laminin-332 (4).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!