In the present study, feasibility of biomethanation of vegetable market waste in a 4-chambered anaerobic baffled reactor (ABR) was investigated at 30d hydraulic retention time and organic loading rate of 0.5gVS/L/d for one year. Indicators of process stability viz., butyrate/acetate and propionate/acetate ratios were consistent with phase separation in the different chambers, which remained unaltered even during recirculation of effluent. Chemical oxygen demand (COD) and volatile solids (VS) removal efficiencies were observed to be consistently high (above 90%). Corresponding biogas and methane yields of 0.7-0.8L/g VS added/d and 0.42-52L/g VS added/d respectively were among the highest reported in case of AD of vegetable waste in an ABR. Process efficiency of the ABR for vegetable waste methanation, which is indicated by carbon recovery factor showed that, nearly 96.7% of the input carbon considered for mass balance was accounted for in the product.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2016.04.039DOI Listing

Publication Analysis

Top Keywords

biomethanation vegetable
8
vegetable market
8
market waste
8
anaerobic baffled
8
baffled reactor
8
mass balance
8
vegetable waste
8
waste
4
waste anaerobic
4
reactor effluent
4

Similar Publications

Modeling of the biomethane production from ultrasonic pretreated fruit and vegetable waste anaerobic digestion.

J Environ Sci Health A Tox Hazard Subst Environ Eng

January 2025

Department of Chemical and Metallurgical Engineering, Vaal University of Technology, Vanderbijlpark, South Africa.

The global dependency on the depleted fossil fuels has led to the quest for acquiring alternative energy sources. Different types of waste material are generated at a high rate and tapping into their use for greener, alternative energy production is an option. The mesophilic anaerobic co-digestion of fruit and vegetable waste and wastewater treatment plant sewage sludge experiments were conducted using ultrasonic pretreated substrates.

View Article and Find Full Text PDF

Quantification and environmental impact of slaughter waste during its life cycle.

Environ Monit Assess

February 2024

Civil and Environmental Engineering Department, Veermata Jijabai Technological Institute (VJTI), Mumbai, Maharashtra, India.

Considering the lack of an in-depth and comprehensive study on slaughter waste quantification and its management, despite the growing demand for meat this study aims to quantify the slaughter waste generated in Mumbra, Thane, India, from the meat retail stores. The study also endeavors to find the composition of slaughter waste in municipal solid waste by employing the questionnaire survey method. The literature reviewed the published studies on the life cycle analysis of food products for global warming potential values for meat and vegetable products along with the vegetarian and non-vegetarian dietary patterns.

View Article and Find Full Text PDF

This study utilized nine anaerobic digesters (ADs) with individual capacities of 10 l to investigate methane (CH) gas generation from various waste combinations and operating conditions, employing both non-tumbling and tumbling processes with the aid of the Taguchi method. The experimentation encompassed different varieties of fruit waste (FW), raw vegetable waste (RVW), and mixed cooked waste (MCW) at varying proportions (1:1, 1:1.5, and 1:2) and temperatures (35 °C, 40 °C, and 45 °C), along with multiple feed inputs.

View Article and Find Full Text PDF

Background: Aquaculture is a major user of plant-derived feed ingredients, such as vegetable oil. Production of vegetable oil and protein is generally more energy-intensive than production of the marine ingredients they replace, so increasing inclusion of vegetable ingredients increases the energy demand of the feed. Microbial oils, such as yeast oil made by fermentation of lignocellulosic hydrolysate, have been proposed as a complement to plant oils, but energy assessments of microbial oil production are needed.

View Article and Find Full Text PDF

Food waste (FW) and fruit, vegetable waste (FVW) are important components of municipal solid waste, yet the performance and related mechanisms of anaerobic co-digestion of FW and FVW for methane production have been rarely investigated. In order to get a deeper understanding of the mechanisms involved, the mesophilic FW and FVW anaerobic co-digestion in different proportions was investigated. The experimental results showed that when the ratio of FW and FVW was 1/1 (in terms of volatile suspended solid), the maximum biomethane yield of 269.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!