Reaction Mechanisms of Metals with Hydrogen Sulfide and Thiols in Model Wine. Part 1: Copper-Catalyzed Oxidation.

J Agric Food Chem

Department of Food Science, The Pennsylvania State University , University Park, Pennsylvania 16802, United States.

Published: May 2016

Sulfidic off-odors as a result of hydrogen sulfide (H2S) and low-molecular-weight thiols are commonly encountered in wine production. These odors are usually removed by the process of Cu(II) fining, a process that remains poorly understood. The present study aims to elucidate the underlying mechanisms by which Cu(II) interacts with H2S and thiol compounds (RSH) under wine-like conditions. Copper complex formation was monitored along with H2S, thiol, oxygen, and acetaldehyde concentrations after the addition of Cu(II) (50 or 100 μM) to air-saturated model wine solutions containing H2S, cysteine, 6-sulfanylhexan-1-ol, or 3-sulfanylhexan-1-ol (300 μM each). The presence of H2S and thiols in excess to Cu(II) led to the rapid formation of ∼1.4:1 H2S/Cu and ∼2:1 thiol/Cu complexes, resulting in the oxidation of H2S and thiols and reduction of Cu(II) to Cu(I), which reacted with oxygen. H2S was observed to initially oxidize rather than form insoluble copper sulfide. The proposed reaction mechanisms provide insight into the extent to which H2S can be selectively removed in the presence of thiols in wine.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jafc.6b00641DOI Listing

Publication Analysis

Top Keywords

reaction mechanisms
8
hydrogen sulfide
8
model wine
8
h2s
8
h2s thiol
8
h2s thiols
8
thiols
5
cuii
5
mechanisms metals
4
metals hydrogen
4

Similar Publications

The SiO electrode interface is passivated with a SiO layer, which hinders the deposition of an inorganic solid electrolyte interphase (SEI) due to its high surface work function and low exchange current density of electrolyte decomposition. Consequently, a thermally vulnerable, organic-based SEI formed on the SiO electrode, leading to poor cycling performance at elevated temperatures. To address this issue, the SEI formation process is thermoelectrochemically activated.

View Article and Find Full Text PDF

Multicomponent reactions have long been recognized as some of the most versatile tools in organic chemistry, with extensive applications in biomedical science and the pharmaceutical industry. In this study, we explored the potential of the Passerini reaction by designing and synthesizing new low molecular mass gelators that can serve as novel formulations for prolonged anesthesia. These gelators address critical issues like poor solubility, low bioavailability, and short plasma half-life, all of which hinder therapeutic efficacy.

View Article and Find Full Text PDF

Background: Immobilized enzyme possessing both high activity and good selectivity is important in practice. In this study, Candida antarctica lipase B (CALB) was immobilized onto the macroporous resin ADS-17 for triacylglycerol (TAG) synthesis through esterification of oleic acid and glycerol. The reaction conditions were optimized by single-factor study and orthogonal test, and the reusability of the immobilized CALB (CALB@ADS-17) was evaluated.

View Article and Find Full Text PDF

The unique optical properties of perovskite quantum dots (PQDs), particularly the tunable photoluminescence (PL) across the visible spectrum, make them a promising tool for chlorinated detection. However, the correlation between the fluorescence emission shift behavior and the interface of phase transformation in PQDs has not been thoroughly explored. In this study, we synthesized CsPbBr PQDs via the hot-injection method and demonstrated their ability to detect chlorinated volatile compounds such as HCl and NaOCl through a halide exchange process between the PQDs' solid thin film and the chlorinated vapor phase.

View Article and Find Full Text PDF

Background: Xueshuantong injection (Lyophilized) (XSTI) is widely used to treat cardiovascular and cerebrovascular diseases. However, anaphylactoid reactions (ARs) are frequently reported as one of its side effects, and the mechanisms of ARs and their relationship with the different immune status are still not well understood.

Purpose: This article aims to examine the sensitizing effect of XSTI, explore the impact of normal and immunocompromised states on ARs, and analyze AR-related metabolic pathways by metabolomics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!