Sulfated glycosaminoglycans (SGNL) were extracted for the first time from Norway lobster (Nephrops norvegicus) shell. The monosaccharide composition analysed by GC/MS revealed the presence of galacturonic acid, glucuronic acid, N-acetylgalactosamine and N-acetylglucosamine. The analysis of SGNL with acetate cellulose electrophoresis in Zn-acetate revealed the presence of heparan sulfate (HS) and dermatan sulfate (DS). SGNL were evaluated for their anticoagulant activities using activated partial thromboplastin time (aPTT), thrombin time (TT) and prothrombine time (PT) tests. After 21h incubation, HCT116 cell proliferation was inhibited (p<0.05) between 39.7 and 54.8% at 1.5-7.5mg/mL of SGNL. SGNL don't show hemolytic activity towards bovine erythrocytes and no cytotoxicity against the normal lymphocytes. The antiproliferative efficacy of these lobster glycosaminoglycans were probably related with the higher sulfate content. SGNL demonstrated promising antiproliferative and anticoagulant potential, which may be used as a novel, effective and promising antithrombotic agent.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biopha.2016.03.027DOI Listing

Publication Analysis

Top Keywords

sulfated glycosaminoglycans
8
norway lobster
8
lobster nephrops
8
nephrops norvegicus
8
norvegicus shell
8
revealed presence
8
anticoagulant properties
4
properties cytotoxic
4
cytotoxic hct116
4
hct116 human
4

Similar Publications

Discovery of a heparan sulfate binding domain in monkeypox virus H3 as an anti-poxviral drug target combining AI and MD simulations.

Elife

January 2025

State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China.

Viral adhesion to host cells is a critical step in infection for many viruses, including monkeypox virus (MPXV). In MPXV, the H3 protein mediates viral adhesion through its interaction with heparan sulfate (HS), yet the structural details of this interaction have remained elusive. Using AI-based structural prediction tools and molecular dynamics (MD) simulations, we identified a novel, positively charged α-helical domain in H3 that is essential for HS binding.

View Article and Find Full Text PDF

Growth Factor Stimulation Regimes to Support the Development and Fusion of Cartilage Microtissues.

Tissue Eng Part C Methods

January 2025

Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.

Scaffold-free tissue engineering strategies using cellular aggregates, microtissues, or organoids as "biological building blocks" could potentially be used for the engineering of scaled-up articular cartilage or endochondral bone-forming grafts. Such approaches require large numbers of cells; however, little is known about how different chondrogenic growth factor stimulation regimes during cellular expansion and differentiation influence the capacity of cellular aggregates or microtissues to fuse and generate hyaline cartilage. In this study, human bone marrow mesenchymal stem/stromal cells (MSCs) were additionally stimulated with bone morphogenetic protein 2 (BMP-2) and/or transforming growth factor (TGF)-β1 during both monolayer expansion and subsequent chondrogenic differentiation in a microtissue format.

View Article and Find Full Text PDF

Adeno-associated virus (AAV)-based vectors have emerged as an effective and widely used technology for somatic gene therapy approaches, including those targeting the retina. A major advantage of the AAV technology is the availability of a large number of serotypes that have either been isolated from nature or produced in the laboratory. These serotypes have different properties in terms of sensitivity to neutralizing antibodies, cellular transduction profile and efficiency.

View Article and Find Full Text PDF

Uncovering the Heterogeneity of Signaling Pathways in Skin Cutaneous Melanoma: Insights into Prognostic Values and Immune Interactions.

Clin Cosmet Investig Dermatol

January 2025

Department of Dermatology and Venereology, Dermatology Hospital of Southern Medical University, Department of Dermatology, Guangzhou, People's Republic of China.

Background: Signaling pathways play crucial roles in tumor cells. However, functional heterogeneity of signaling pathways in skin cutaneous melanoma (SKCM) has not been established.

Methods: Based on a recent computational pipeline, pathway activities between SKCM and normal samples were identified.

View Article and Find Full Text PDF

Amidine-functionalized aggregation-induced emission luminogen and a 3D-printed digital sensor platform for ultrafast and visual detection of heparin.

Anal Chim Acta

February 2025

College of Chemistry, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Food Laboratory of Zhongyuan, Zhengzhou University, Zhengzhou, 450001, China.

Background: Heparin is a widely used anticoagulant in clinic. However, improper dosing can increase the risk of thromboembolic events, potentially leading to life-threatening complications. Clinic monitoring of heparin is very important for its use safety.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!