Ribonucleotide reductases (RNRs) reduce ribonucleotides to deoxyribonucleotides. Their overall activity is stimulated by ATP and downregulated by dATP via a genetically mobile ATP cone domain mediating the formation of oligomeric complexes with varying quaternary structures. The crystal structure and solution X-ray scattering data of a novel dATP-induced homotetramer of the Pseudomonas aeruginosa class I RNR reveal the structural bases for its unique properties, namely one ATP cone that binds two dATP molecules and a second one that is non-functional, binding no nucleotides. Mutations in the observed tetramer interface ablate oligomerization and dATP-induced inhibition but not the ability to bind dATP. Sequence analysis shows that the novel type of ATP cone may be widespread in RNRs. The present study supports a scenario in which diverse mechanisms for allosteric activity regulation are gained and lost through acquisition and evolutionary erosion of different types of ATP cone.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.str.2016.03.025DOI Listing

Publication Analysis

Top Keywords

atp cone
16
allosteric activity
8
activity regulation
8
atp
6
structural mechanism
4
mechanism allosteric
4
regulation ribonucleotide
4
ribonucleotide reductase
4
reductase double
4
double atp
4

Similar Publications

The fully bio-based bilayered flame retardant treatment for paper via natural bio-materials.

Front Chem

December 2024

School of the Environment and Safety Engineering (School of the Emergency Management), Jiangsu University, Zhenjiang, China.

In this paper, we report a novel method for enhancing the flame retardancy of wood-based paper by utilizing natural biomaterials. The research constructed a bilayered structure coating on paper fiber surfaces, incorporating mixed starch (MS), adenosine triphosphate (ATP), and phytic acid (PA) as natural bio-based flame retardants. The structural configuration of the coating comprises MS/ATP and MS/PA, which were sequentially assembled as bottom and top parts, respectively, through pneumatic spraying.

View Article and Find Full Text PDF

Mutations in the gene ABCA4 coding for photoreceptor-specific ATP-binding cassette subfamily A member 4, are responsible for Stargardts Disease type 1 (STGD1), the most common form of inherited macular degeneration. STGD1 typically declares early in life and leads to severe visual handicap. Abca4 gene-deletion mouse models of STGD1 accumulate lipofuscin, a hallmark of the disease, but unlike the human disease show no or only moderate structural changes and no functional decline.

View Article and Find Full Text PDF

Stargardt disease (STGD), the leading cause of inherited childhood blindness, is primarily caused by mutations in the ABCA4 gene; yet, the underlying mechanisms of photoreceptor degeneration remain elusive, partly due to limitations in existing animal disease models. To expand our understanding, we mutated the human ABCA4 paralogues abca4a and abca4b in zebrafish, which has a cone-rich retina. Our study unveiled striking dysmorphology and elongation of cone outer segments (COS) in abca4a;abca4b double mutants, alongside reduced phagocytosis by the retinal pigmented epithelium (RPE).

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the role of mechanosensitive channels (MSCs) in the retina, particularly how they relate to conditions like glaucoma and retinal injuries caused by increased pressure.
  • Using advanced techniques, the researchers analyzed the expression of various MSCs in different retinal cells, including Müller cells and retinal ganglion cells (RGCs).
  • They found a critical balance between hyperpolarizing and depolarizing MSCs in retinal neurons, suggesting that this balance may affect how vulnerable these neurons are to pressure-induced damage, highlighting potential new avenues for treatment.
View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how the timing of hibernation affects retinal damage in 13-lined ground squirrels after injecting them with adenosine triphosphate (ATP).
  • Eighteen squirrels were divided into three groups based on the season (early, mid, late) and underwent imaging before and after ATP injection to assess retinal health.
  • Results indicated that early-season squirrels were more likely to suffer retinal damage, and further research is suggested to refine ATP dosing based on seasonal ocular changes.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!