Background: Nanocarriers endow tremendous benefits to the drug delivery systems depending upon the specific properties of either component. These benefits include, increase in the drug blood retention time, reduced efflux, additional toxicity and targeted delivery. Methotrexate (MTX) is clinically used for cancer treatment. Higher dosage of MTX results in hepatic and renal toxicity. In this study methotrexate silver nanoparticles (Ag-MTX) coated with polyethylene glycol (PEG) are synthesized and characterized. Their anticancer activity and biocompatibility is also evaluated.
Results: Ag-MTX nanoparticles are synthesized by chemical reduction method. They are characterized by Ultraviolet-Visible Spectroscopy and Fourier Transform Infrared Spectroscopy. Average size of PEG coated Ag-MTX nanoparticles (PEG-Ag-MTX nanoparticles) is 12nm. These particles exhibited improved anticancer activity against MCF-7 cell line. Hemolytic activity of these particles was significantly less than MTX.
Conclusion: PEG-Ag-MTX nanoparticles are potential nanocarrier of methotrexate which may offer MTX based cancer treatment with reduced side effects. In-vivo investigations should be carried out to explore them in detail.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejps.2016.04.029 | DOI Listing |
Nat Commun
December 2024
Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan, Taiwan.
Immune checkpoint inhibitors (ICI) represent new anticancer agents and have been used worldwide. However, ICI can potentially induce life-threatening severe cutaneous adverse reaction (SCAR), such as Stevens-Johnson syndrome/toxic epidermal necrolysis (SJS/TEN), hindering continuous ICI therapy. We examine 6 cohorts including 25 ICI-induced SJS/TEN patients and conduct single-cell RNA sequencing (scRNA-seq) analysis, which shows overexpression of macrophage-derived CXCL10 that recruits CXCR3 cytotoxic T lymphocytes (CTL) in blister cells from ICI-SJS/TEN skin lesions.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
DNA helicases play a pivotal role in maintaining genome integrity by unwinding the DNA double helix and are often considered promising targets for drug development. However, assessing specific DNA helicase activity in living cells remains challenging. Herein, the first anchor-embedded duplex (ATED) probe, 17GC, is constructed to uniquely monitor the unwinding activity of Werner syndrome helicase (WRN), a clinical anticancer target.
View Article and Find Full Text PDFArch Pharm (Weinheim)
January 2025
School of Chemistry and Pharmaceutical Engineering, Huanghuai University, Zhumadian, Henan, China.
Cancer, characterized by uncontrolled growth and spread of abnormal cells potentially influencing almost all tissues in the body, is one of the most devastating and lethal diseases throughout the world. Chemotherapy is one of the principal approaches for cancer treatment, but multidrug resistance and severe side effects represent the main barriers to the success of therapy, creating a vital need to develop novel chemotherapeutic agents. The 1,2,3-triazole moiety can be conveniently constructed by "click chemistry" and could exert diverse noncovalent interactions with various enzymes in cancer cells.
View Article and Find Full Text PDFPharm Dev Technol
December 2024
Department of Cariology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
The increasing prevalence of dental pathogens and oral cancer calls for new therapeutic agents. Nanoparticle (NPs) based tumor therapy enables precise targeting and controlled drug release, improving anti-cancer treatment efficacy while reducing systemic toxicity. Zinc oxide NPs (ZnO NPs) are notable in nanomedicine for their exceptional physicochemical and biological properties.
View Article and Find Full Text PDFCytojournal
November 2024
Medical College, Ningbo University Health Science Center, Ningbo, China.
Objective: Patients with non-small cell lung cancer (NSCLC) have poor prognoses. Sulfatase 1 (SULF1) is an extracellular neutral sulfatase and is involved in multiple physiological processes. Hence, this study investigated the function and possible mechanisms of SULF1 in NSCLC.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!