Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Ethnopharmacological Relevance: The water-soluble total flavonoids (WSTF) were extracted from Isodon lophanthoides var. gerardianus (Benth.) H. Hara, a common folk herbal medicine in China, which has been recorded by the "Chinese Pharmacopoeia" in 2015 and used for prevention and clinical treatment of common diseases of liver and gall for many years.
Objective Of The Study: The aim of this study is to evaluate the effects of WSTF on apoptosis in HepG2 cell and investigate the relevant mechanisms underlying.
Materials And Methods: Cytotoxicity was evaluated in HepG2 cells (human hepatoma cell lines) using MTT assay. The influence of the WSTF on the intracellular reactive oxygen species (iROS) and the mitochondrial membrane potential were also determinated. We used flow cytometry analysis to detect the effects of WSTF on apoptosis, cell cycle. Then we applied RT-PCR for genetic expression of main effectors and western blot analysis for activation of main effectors involved in the potential apoptosis signaling pathways.
Results: WSTF inhibited cell growth in HepG2 cells. Moreover, WSTF stimulates to increase amount of iROS, mitochondrial membrane potential, and the apoptotic relevant factors (cytochrome c, caspase-3) in HepG2 cells. WSTF could significantly induce apoptosis through downregulating apoptosis-antagonizing protein (Bcl-2, Survivin, mcl-1) and upregulating apoptosis-promoting proteins (Bax) and cell cycle G0/G1 arrest in HepG2 cells.
Conclusion: The results indicate that WSTF induces cell apoptosis through mitochondrial pathway in the HepG2 cells. Therefore, these studies suggest that WSTF could be used as a chemotherapeutic agent to treat hepatoma.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jep.2016.04.042 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!