Liver-vessel segmentation plays an important role in vessel structure analysis for liver surgical planning. This paper presents a liver-vessel segmentation method based on extreme learning machine (ELM). Firstly, an anisotropic filter is used to remove noise while preserving vessel boundaries from the original computer tomography (CT) images. Then, based on the knowledge of prior shapes and geometrical structures, three classical vessel filters including Sato, Frangi and offset medialness filters together with the strain energy filter are used to extract vessel structure features. Finally, the ELM is applied to segment liver vessels from background voxels. Experimental results show that the proposed method can effectively segment liver vessels from abdominal CT images, and achieves good accuracy, sensitivity and specificity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejmp.2016.04.003DOI Listing

Publication Analysis

Top Keywords

based extreme
8
extreme learning
8
learning machine
8
liver-vessel segmentation
8
vessel structure
8
segment liver
8
liver vessels
8
liver
4
liver vessel
4
vessel segmentation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!