Characterization and influence of cardiac background sodium current in the atrioventricular node.

J Mol Cell Cardiol

School of Physiology, Pharmacology & Neuroscience, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, UK. Electronic address:

Published: August 2016

Background inward sodium current (IB,Na) that influences cardiac pacemaking has been comparatively under-investigated. The aim of this study was to determine for the first time the properties and role of IB,Na in cells from the heart's secondary pacemaker, the atrioventricular node (AVN). Myocytes were isolated from the AVN of adult male rabbits and mice using mechanical and enzymatic dispersion. Background current was measured using whole-cell patch clamp and monovalent ion substitution with major voltage- and time-dependent conductances inhibited. In the absence of a selective pharmacological inhibitor of IB,Na, computer modelling was used to assess the physiological contribution of IB,Na. Net background current during voltage ramps was linear, reversing close to 0mV. Switching between Tris- and Na(+)-containing extracellular solution in rabbit and mouse AVN cells revealed an inward IB,Na, with an increase in slope conductance in rabbit cells at -50mV from 0.54±0.03 to 0.91±0.05nS (mean±SEM; n=61 cells). IB,Na magnitude varied in proportion to [Na(+)]o. Other monovalent cations could substitute for Na(+) (Rb(+)>K(+)>Cs(+)>Na(+)>Li(+)). The single-channel conductance with Na(+) as charge carrier estimated from noise-analysis was 3.2±1.2pS (n=6). Ni(2+) (10mM), Gd(3+) (100μM), ruthenium red (100μM), or amiloride (1mM) produced modest reductions in IB,Na. Flufenamic acid was without significant effect, whilst La(3+) (100μM) or extracellular acidosis (pH6.3) inhibited the current by >60%. Under the conditions of our AVN cell simulations, removal of IB,Na arrested spontaneous activity and, in a simulated 1D-strand, reduced conduction velocity by ~20%. IB,Na is carried by distinct low conductance monovalent non-selective cation channels and can influence AVN spontaneous activity and conduction.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5007024PMC
http://dx.doi.org/10.1016/j.yjmcc.2016.04.014DOI Listing

Publication Analysis

Top Keywords

ibna
9
background sodium
8
sodium current
8
atrioventricular node
8
background current
8
spontaneous activity
8
current
5
avn
5
characterization influence
4
influence cardiac
4

Similar Publications

High consumption of ultra-processed foods, rich in sugar and unhealthy fats, has been linked to the onset of numerous chronic diseases. Consequently, there has been a growing shift towards a fiber-rich diet, abundant in fruits, vegetables, seeds, and nuts, to enhance longevity and quality of life. The primary bioactive components in these plant-based foods are polyphenols, which exert significant effects on modulating the gastrointestinal microbiota through their antioxidant and anti-inflammatory activities.

View Article and Find Full Text PDF

Milk thistle is one of the most popular ingredients in the liver protection products market. Silymarin is the main component of milk thistle and contains multiple isomers. There have been few studies focusing on the compositional ratios of silymarin isomers.

View Article and Find Full Text PDF

Alternariol monomethyl-ether (AME), together with altenuene and alternariol, belongs to the mycotoxins group, which can contaminate different substrates, including cereals. The aim of the present study was to obtain a deeper understanding concerning the effects of AME on pig intestinal health using epithelial intestinal cell lines as the data concerning the possible effects of toxins on swine are scarce and insufficient for assessing the risk represented by toxins for animal health. Our results have shown a dose-related effect on IPEC-1 cell viability, with an IC50 value of 10.

View Article and Find Full Text PDF

At weaning, piglets are exposed to a large variety of stressors, from environmental/behavioral factors to nutritional stress. Weaning transition affects the gastrointestinal tract especially, resulting in specific disturbances at the level of intestinal morphology, barrier function and integrity, mucosal immunity and gut microbiota. All these alterations are associated with intestinal inflammation, oxidative stress and perturbation of intracellular signaling pathways.

View Article and Find Full Text PDF

Oxidative stress is a pivotal factor in the pathogenesis of intestinal inflammation, leading to cellular damage and tissue injury. Natural antioxidants compounds found in agro-industrial by-products have proven their effectiveness in treatment of intestinal inflammation and oxidative stress, exhibiting many favourable effects. The aim of this study was to evaluate the capacity of a grape seed meal byproduct (GSM) to counteract the effects induced by E.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!