Food restriction and weight loss are known to prevent obesity-related heart diseases. This study investigates whether food restriction elicits anti-apoptotic and pro-survival effects on high-fat diet-induced obese hearts. Histopathological analysis, TUNEL assay, and Western blotting were performed on the excised hearts from three groups of Sprague-Dawley rats which were fed with regular chow diet (CON, 13.5 % fat), a high-fat ad libitum diet (HFa, 45 % fat), or a high-fat food-restricted diet (HFr, 45 % fat, maintaining the same weight as CON) for 12 weeks. Body weight, blood pressure, heart weight, triglycerides, insulin, HOMA, interstitial spaces, cardiac fibrosis, and cardiac TUNEL-positive apoptotic cells were increased in HFa relative to CON, whereas these parameters were decreased in HFr relative to HFa. The protein levels of cardiac Fas ligand, Fas receptors, Fas-associated death domain (FADD), activated caspase-8, and activated caspase-3 (Fas receptor-dependent apoptotic pathways), as well as t-Bid/Bid, Bax/Bcl-2, Bad/p-Bad, Cytochrome c, activated caspase-9, and activated caspase-3 (mitochondria-dependent apoptotic pathways) in HFr were lower than those in HFa. Moreover, the Bcl-xL and IGF-1-related components of IGF-1, p-PI3 K/PI3 K, p-Akt/Akt in HFr were higher than those in HFa. Our findings suggest that a restricted high-fat diet for maintaining weight control could diminish cardiac Fas receptor-dependent and mitochondria-dependent apoptotic pathways as well as might enhance IGF-1-related pro-survival pathways. In sum, food restriction for maintaining normal weight could elicit anti-apoptotic and pro-survival effects on high-fat diet-induced obese hearts.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12012-016-9370-2DOI Listing

Publication Analysis

Top Keywords

food restriction
16
anti-apoptotic pro-survival
12
pro-survival effects
12
high-fat diet-induced
12
diet-induced obese
12
obese hearts
12
apoptotic pathways
12
effects high-fat
8
fat high-fat
8
45 % fat
8

Similar Publications

Background: Developing interventions along with the population of interest using systems thinking is a promising method to address the underlying system dynamics of overweight. The purpose of this study is twofold: to gain insight into the perspectives of adolescents regarding: (1) the system dynamics of energy balance-related behaviours (EBRBs) (physical activity, screen use, sleep behaviour and dietary behaviour); and (2) underlying mechanisms and overarching drivers of unhealthy EBRBs.

Methods: We conducted Participatory Action Research (PAR) to map the system dynamics of EBRBs together with adolescents aged 10-14 years old living in a lower socioeconomic, ethnically diverse neighbourhood in Amsterdam East, the Netherlands.

View Article and Find Full Text PDF

Photothermal/photodynamic synergistic antibacterial Nanocellulose film modified with antioxidant MXene-PANI Nanosheets.

Int J Biol Macromol

January 2025

Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China. Electronic address:

TEMPO-CNF film modified by two-dimension transition metal MXene has certain antibacterial properties. However, the problem of long-lasting stability greatly restricts the feasibility of long-term use of the composite film. Here, we introduced polyaniline (PANI) as a modifying molecule, which was electrostatically adsorbed on the surface of the MXene nanosheets to prevent its self-stacking and delay its oxidation.

View Article and Find Full Text PDF

Enhancing curcumin stability and bioavailability through chickpea protein isolate-citrus pectin conjugate emulsions: Targeted delivery and gut microecology modulation.

Int J Biol Macromol

January 2025

School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China; Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shihezi University, Shihezi, Xinjiang 832000, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, Shihezi University, Shihezi, Xinjiang 832000, China. Electronic address:

The limited solubility, rapid metabolism, and poor bioavailability of curcumin restrict its application. In this study, we synthesized chickpea protein isolate (CPI)-citrus pectin (CP) conjugates to prepare an emulsion delivery system that enhances the stability and bioavailability of curcumin. The CPI-CP emulsion achieved a curcumin encapsulation efficiency of 86.

View Article and Find Full Text PDF

The negative impacts of bisphenols on thyroid function in adults with bisphenol A exposure level exceeding the tolerable daily intake.

Ecotoxicol Environ Saf

January 2025

NHC Key Laboratory of Public Nutrition and Health, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China. Electronic address:

In 2023, European Food Safety Authority (EFSA) published a re-evaluation of the safety of bisphenol A (BPA), establishing the new tolerable daily intake (TDI) as 0.2 ng/kg·bw/day with a 20,000-fold reduction compared to 2015, which regained public concern about the impact of bisphenols (BPs) on human health. In order to explore the health risk to thyroid function of BPs, in this study, we assessed the internal exposure levels of BPs and the relationships between urinary BPs and thyroid function in general adults.

View Article and Find Full Text PDF

The recent U.S. Food and Drug Administration guidance on complex innovative trial designs acknowledges the use of Bayesian strategies to incorporate historical information based on clinical expertise and data similarity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!