Lipid droplets (LDs) are intracellular oil-in-water emulsion droplets, covered by a phospholipid monolayer and mainly present in the cytosol. Despite their important role in cellular metabolism and growing number of newly identified functions, LD formation mechanism from the endoplasmic reticulum remains poorly understood. To form a LD, the oil molecules synthesized in the ER accumulate between the monolayer leaflets and induce deformation of the membrane. This formation process works through three steps: nucleation, growth and budding, exactly as in phase separation and dewetting phenomena. These steps involve sequential biophysical membrane remodeling mechanisms for which we present basic tools of statistical physics, membrane biophysics, and soft matter science underlying them. We aim to highlight relevant factors that could control LD formation size, site and number through this physics description. An emphasis will be given to a currently underestimated contribution of the molecular interactions between lipids to favor an energetically costless mechanism of LD formation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbalip.2016.04.018 | DOI Listing |
Phys Chem Chem Phys
January 2025
Helmholtz Institute Erlangen-Nürnberg for Renewable Energy, Forschungszentrum Jülich, Fürther Strasse 248, 90429 Nürnberg, Germany.
Interest in organic solar cells (OSCs) is constantly rising in the field of photovoltaic devices. The device performance relies on the bulk heterojunction (BHJ) nanomorphology, which develops during the drying process and additional post-treatment. This work investigates the effect of thermal annealing (TA) on the all-small molecule DRCN5T:PCBM blend with phase field simulations.
View Article and Find Full Text PDFACS Omega
December 2024
State Key Lab of Crystal Materials, Institute of Novel Semiconductors, Center for Optics Research and Engineering Shandong University, Jinan 250100, PR China.
Monocrystalline graphene growth has always been an intriguing research focus. Argon (Ar) is merely viewed as a carrier gas due to its inert chemical properties throughout the whole growth procedure by the chemical vapor deposition method. In this work, the influence of Ar on temperature and flow fields was investigated in consideration of its physical parameter difference among all involved gases.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
School of Materials, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China.
Hexagonal diamond (HD) was reported 60 years ago and has attracted extensive attention owing to its ultrahigh theoretical hardness, 58% superior to its cubic counterpart. However, to date, synthesizing pure HD under high-pressure and high-temperature (HPHT) remains unsuccessful due to the limitations of understanding the formation mechanism. In this work, employing a systematic molecular dynamics simulation, we directly observe the graphite-to-HD transition in a nucleation-growth mechanism.
View Article and Find Full Text PDFAdv Mater
January 2025
Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China.
Inserting metal ions into the porphyrin ring is one of the primary strategies to enhance the properties of porphyrin-based metal-organic frameworks (MOFs). However, the straightforward, rapid, and energy-efficient synthesis of porphyrin-based MOFs with high metallization for the porphyrin ring remains challenging. Herein, a solution anode glow discharge (SAGD) microplasma is presented for the one-step synthesis of scandium-metalloporphyrin frameworks (ScMPFs).
View Article and Find Full Text PDFSci Total Environ
January 2025
School of Environment and Energy, South China University of Technology, Guangzhou 510006, China.
The efficacy of ferrihydrite in remediating Cd-contaminated soil is tightly regulated by Fe(II)-induced mineralogical transformations. Despite the common coexistence of iron minerals such as goethite and lepidocrocite, which can act as templates for secondary mineral formation, the impact of these minerals on Fe(II)-induced ferrihydrite transformation and the associated Cd fate have yet to be elucidated. Herein, we investigated the simultaneous evolution of secondary minerals and Cd speciation during Fe(II)-induced ferrihydrite transformation in the presence of goethite versus lepidocrocite.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!