A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The Effect of Shear on the Structural Conformation of rhGH and IgG1 in Free Solution. | LitMetric

The Effect of Shear on the Structural Conformation of rhGH and IgG1 in Free Solution.

J Pharm Sci

Department of Pharmaceutical Development, Sandoz GmbH, 6336 Langkampfen, Austria.

Published: June 2016

The effect of hydrodynamic forces on proteins in free solution, also referred to as shear stress in multiple drug substance and drug product processing steps, was investigated by means of in situ and inline biophysical measurements. The use of a quartz Couette cell in combination with a circular dichroism spectrometer allowed simultaneously the creation of simple shear flow and direct measurements of the proteins' secondary and tertiary structure. Recombinant human growth hormone and an IgG1 mAb were chosen as model proteins. Under the exclusion of interfacial effects by the addition of a surfactant, no unfolding was observed due to shearing for 30 min up to the highest possible shear rate under laminar flow (3840 s(-1)). In another experiment, guanidine hydrochloride was added to a surfactant-protected and sheared sample to lower the thermodynamic and mechanical stability of the proteins. However, even under these destabilizing conditions, the proteins showed no change in their secondary and tertiary structure. We conclude that shear stress in terms of velocity gradients is unlikely to unfold the investigated proteins in free solution up to shear rates of at least 10(4) s(-1).

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.xphs.2016.03.020DOI Listing

Publication Analysis

Top Keywords

free solution
12
proteins free
8
shear stress
8
secondary tertiary
8
tertiary structure
8
shear
6
proteins
5
shear structural
4
structural conformation
4
conformation rhgh
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!