Unlabelled: As a matter of fact, the in vivo oxidative degradation of highly cross-linked polyethylene (HXLPE) still remains one of the limiting factors that affect the long term survivorship of joint replacements. Recent studies clearly pointed out that also the new generation of highly cross-linked and remelted polyethylene components in total hip and knee replacement underwent unexpected oxidation after 5-10years of implantation. The standard methodology to investigate the oxidation of polyethylene (PE) relies on the use of infrared spectroscopy, which, if from one hand is a reliable technique for the detection of oxidized species containing carbonyl group, on the other hand it is not capable of discriminating the fraction of carboxyl acids that is responsible for chain scission and subsequent deterioration of the mechanical properties of the polymer. In the present study we validate a new protocol based on Raman spectroscopy, which is suitable on assessing the structural degradation of polyethylene induced by oxidation. Following in vitro accelerated aging experiments, the oxidation index (OI) of different commercially available HXLPEs, as calculated by infrared spectroscopy according to ASTM standard, has been univocally correlated to the most severe variation of crystalline phase (αc), as calculated by Raman spectroscopy. In each material, locations with equal values of OI showed different degree of recrystallization induced by chain scission, confirming that infrared spectroscopy might overestimate the effective mechanical degradation of the polymer. In addition, as compared to the standards based on infrared spectroscopy, this new method of assessing oxidation enables to investigate the degradation occurring on the original surface of HXLPE components, due to the nondestructive nature of Raman spectroscopy and its high spatial resolution.
Statement Of Significance: In the present study we validate a new protocol based on Raman spectroscopy, which is suitable on assessing the structural degradation of polyethylene induced by oxidation. In fact, the standard methodology to investigate the oxidation in polyethylene relies on the use of infrared spectroscopy, which is capable of detecting the presence of oxidized species containing carbonyl group, the main products of oxidation in polyolefins. If from one hand this technique enables quantitative analysis of oxidation, on the other hand it is not capable of discriminating the fraction of species with carbonyl groups responsible for the chain scission. In fact, esters, ketones and carboxyl acids are products of oxidation with carbonyl groups commonly formed on polyethylene at the end of the oxidative cascade initiated by the presence of free radicals, but only the latter are responsible for the chain scission and the subsequent deterioration of the mechanical properties. The oxidation index as obtained according to the ASTM standards is not univocally correlated to a certain degree of mechanical deterioration, but, in simple words, two retrievals with the same amount of carbonyl groups might have had different degradation of the mechanical properties. Recrystallization is a direct consequence of the reduction of molecular weight that occurs after chain scission. Raman spectroscopy (RS) is a viable non-destructive method to assess the fraction of crystalline phase in polyethylene and, due to its high spatial resolution, is perfectly suitable to analyze the microstructural modification at the mesoscopic scale, where the effects of oxidation manifest themselves. The aim of the present paper is twofold: i) to compare the microstructural modifications caused by in vitro oxidation on 5 different types of polyethylene currently available on the market of joint replacements; ii) to establish a protocol based on the comparative analysis of IR and RS results to obtain a phenomenological correlation capable to judge the mechanical deterioration of the material induced by the oxidative degradation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.actbio.2016.04.040 | DOI Listing |
JACS Au
January 2025
Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zurich, Switzerland.
Hydrogenation of CO to methanol is foreseen as a key step to close the carbon cycle. In this study, we show that introducing Ga into silica-supported nanoparticles based on group 8-9 transition noble metals (M = Ru, Os, Rh, and Ir - Ga@SiO) switches their reactivity from producing mostly methane (sel. > 97%) to producing methanol (>50% CHOH/DME sel.
View Article and Find Full Text PDFJACS Au
January 2025
School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China.
The synthesis of high-performance catalysts for volatile organic compounds (VOCs) degradation under humid conditions is essential for their practical industrial application. Herein, a codoping strategy was adopted to synthesize the N-CoO-C catalyst with N, C codoping for low-temperature ethyl acetate (EA) degradation under humid conditions. Results showed that N-CoO-C exhibited great catalytic activity ( = 177 °C) and water resistance (5.
View Article and Find Full Text PDFHeliyon
January 2025
Food Toxicology and Contaminants Department, National Research Centre, Egypt.
is a severe danger to worldwide maize () cultivation, due to its extreme toxicity of aflatoxins produced by the fungi, and its ability to cause economic losses while also posing a health concern to humans and animals. Among the measures that may be considered for control, applying coatings based on natural ingredients appears to be the most promising. The current work examines the antagonistic ability of bioactive metabolites added to chitosan nanoparticles against on maize kernels.
View Article and Find Full Text PDFAnal Chem
January 2025
Department of Chemistry, University at Albany, SUNY, 1400 Washington Avenue, Albany, New York 12222, United States.
DNA phenotyping plays a central role in modern practical forensics, yet an overwhelming amount of evidence creates significant backlogs in all major crime laboratories. A fast nondestructive test of a potential biological stain prior to DNA phenotyping should reduce the number of irrelevant samples for the analysis and increase the efficiency of the overall process. Evidence items recovered from the crime scene can often include body fluid traces, such as oral fluid (OF).
View Article and Find Full Text PDFLangmuir
January 2025
Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
Acid mine drainage sludge (AMDS) can be utilized as a raw material to synthesize an efficient adsorbent through a more environmentally friendly approach for the removal of pollutants from water. In this study, iron ions were extracted from AMDS and then reacted with trimesic acid (BTC) under ambient conditions to synthesize Fe-BTC-, iron-based metal-organic frameworks. These materials demonstrate an exceptionally high specific surface area and excellent chemical stability.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!