Capillary condensation in the regime of developing hysteresis occurs at a vapor pressure, Pcond, that is less than that of the vapor-like spinodal. This is because the energy barrier for the vapor-liquid transition from a metastable state at Pcond becomes equal to the energy fluctuation of the system; however, a detailed mechanism of the spontaneous transition has not been acquired even through extensive experimental and simulation studies. We therefore construct accurate atomistic silica mesopore models for MCM-41 and perform molecular simulations (gauge cell Monte Carlo and grand canonical Monte Carlo) for argon adsorption on the models at subcritical temperatures. A careful comparison between the simulation and experiment reveals that the energy barrier for the capillary condensation has a critical dimensionless value, Wc (*) = 0.175, which corresponds to the thermal fluctuation of the system and depends neither on the mesopore size nor on the temperature. We show that the critical energy barrier Wc (*) controls the capillary condensation pressure Pcond and also determines a boundary between the reversible condensation/evaporation regime and the developing hysteresis regime.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.4947243DOI Listing

Publication Analysis

Top Keywords

energy barrier
16
capillary condensation
16
critical energy
8
barrier capillary
8
regime developing
8
developing hysteresis
8
pressure pcond
8
fluctuation system
8
monte carlo
8
barrier
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!