In this study, commonly detected emerging contaminants (ECs) in water, including di-n-butyl phthalate (DnBP), di(2-ethylhexyl) phthalate (DEHP), cephalexin (CLX), sulfamethoxazole (SMX) and caffeine (CAF), were selected as the target contaminants. A lab-prepared graphene-containing ceramic composite tubular membrane (TGCCM) coupled with the simultaneous electrocoagulation and electrofiltration process (EC/EF) in crossflow filtration mode was used to remove target contaminants in model solution. Meanwhile, a comparison of the removal efficiency was made among various tubular composite membranes reported, including carbon fibers/carbon/alumina composite tubular membrane (TCCACM), titania/alumina composite tubular membrane (TTACM) and alumina tubular membrane (TAM). The results of this study showed that the removal efficiencies for DnBP and DEHP were 99%, whereas 32-97% for cephalexin (CLX), sulfamethoxazole (SMX) and caffeine (CAF). In this work the mechanisms involved in removing target ECs were proposed and their roles in removing various ECs were also discussed. Further, two actual municipal wastewaters were treated to evaluate the applicability of the aforementioned treatment technology (i.e., TGCCM coupled with EC/EF) to various aqueous solutions in the real world.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2016.04.060 | DOI Listing |
JACS Au
December 2024
Department of Chemistry, University of Antwerp, Antwerp 2020, Belgium.
Proton-coupled electron transfer (PCET) is a fundamental redox process and has clear advantages in selectively activating challenging C-H bonds in many biological processes. Intrigued by this activation process, we aimed to develop a facile PCET process in cancer cells by modulating proton tunneling. This approach should lead to the design of an alternative photodynamic therapy (PDT) that depletes the mitochondrial electron transport chain (ETC), the key redox regulator in cancer cells under hypoxia.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China. Electronic address:
Excessive molybdenum (Mo) and cadmium (Cd) are environmental pollutants with serious nephrotoxicity. B-cell lymphoma 2 (Bcl-2) plays a critical role in modulating mitochondrial ROS (Mito-ROS). Ferroptosis is a form of cell death dependent on lipid peroxidation.
View Article and Find Full Text PDFKidney360
December 2024
Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, the Netherlands.
Background: Epidermal growth factor is expressed in the distal tubule and secreted in urine (uEGF) after cleavage of membrane-bound pro-EGF. Lower uEGF is associated with kidney disease progression. EGF also plays a role in the regulation of serum magnesium and blood pressure, but whether uEGF is associated with these parameters is unknown.
View Article and Find Full Text PDFClin J Am Soc Nephrol
December 2024
Department of Biomedical engineering, Emory University, Atlanta, GA, USA.
Background: Interstitial fibrosis and tubular atrophy (IFTA), and density and shape of peritubular capillaries (PTCs), are independently prognostic of disease progression. This study aimed to identify novel digital biomarkers of disease progression and assess the clinical relevance of the interplay between a variety of PTC characteristics and their microenvironment in glomerular diseases.
Methods: A total of 344 NEPTUNE/CureGN participants were included: 112 minimal change disease, 134 focal segmental glomerulosclerosis, 61 membranous nephropathy, and 37 IgA nephropathy.
Front Pharmacol
December 2024
Wenzhou Key Laboratory for the Diagnosis and Prevention of Diabetic Complications, The Third Affiliated Hospital of Wenzhou Medical University (Ruian People's Hospital), Ruian, China.
Background: Fibrosis is key in the development and progression of diabetic kidney disease (DKD). Baicalin (BA), wogonin (WGN), and wogonoside (WGS) have renoprotective effects. The mechanism of alleviation of DKD progression, by improving renal fibrosis, is unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!