Functional studies of the roles that DNA helicases play in human cells have benefited immensely from DNA fiber (or single molecule) technologies, which enable us to discern minute differences in behaviors of individual replication forks in genomic DNA in vivo. DNA fiber technologies are a group of methods that use different approaches to unravel and stretch genomic DNA to its contour length, and display it on a glass surface in order to immuno-stain nucleoside analog incorporation into DNA to reveal tracks (or tracts) of replication. We have previously adopted a microfluidic approach to DNA stretching and used it to analyze DNA replication. This method was introduced under the moniker maRTA or microfluidic-assisted Replication Track Analysis, and we have since used it to analyze roles of the RECQ helicases WRN and BLM, and other proteins in normal and perturbed replication. Here we describe a novel application of maRTA to detect and measure repair of DNA damage produced by three different agents relevant to etiology or therapy of cancer: methyl-methanesulfonate, UV irradiation, and mitomycin C. Moreover, we demonstrate the utility of this method by analyzing DNA repair in cells with reduced levels of WRN or of the base excision repair protein XRCC1.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5035571 | PMC |
http://dx.doi.org/10.1016/j.ymeth.2016.04.029 | DOI Listing |
Pharmazie
December 2024
Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia.
: Major Depressive Disorder (MDD) is a prevalent and debilitating mental disorder that has been linked to hyperhomocysteinemia and folate deficiency. These conditions are influenced by the methylenetetrahydrofolate reductase () gene, which plays a crucial role in converting homocysteine to methionine and is essential for folate metabolism and neurotransmitter synthesis, including serotonin. : This study explored the association between and polymorphisms among Saudi MDD patients attending the Erada Complex for Mental Health and Erada Services outpatient clinic in Jeddah, Saudi Arabia.
View Article and Find Full Text PDFJ Occup Health
January 2025
Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan.
Objectives: Natural fibrous mineral, asbestos, has been useful in industry for many centuries. In the 1960's, epidemiology had recognized the association between asbestos exposure and mesothelioma and the IARC designated all kinds of asbestos as Group 1 in 1987. However, various scientific enigmas remained regarding the molecular mechanisms of asbestos-induced mesothelial carcinogenesis.
View Article and Find Full Text PDFClin Rev Allergy Immunol
January 2025
Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
In recent years, epigenetic modifications have attracted significant attention due to their unique regulatory mechanisms and profound biological implications. Acting as a bridge between environmental stimuli and changes in gene activity, they reshape gene expression patterns, providing organisms with regulatory mechanisms to respond to environmental changes. A growing body of evidence indicates that epigenetic regulation plays a crucial role in the pathogenesis and progression of psoriasis.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Department of Biology, Hamilton College, Clinton, NY, USA.
Perfluorooctane sulfonic acid (PFOS) is an anthropogenic chemical found in aqueous film-forming foams (AFFFs) and many consumer products. Despite its environmental ubiquity and persistence, little is known about the effects of PFOS on stress levels in wild animals. Here, we examined PFOS bioaccumulation and correlations between PFOS exposure and oxidative stress in snapping turtles (Chelydra serpentina) downstream of Griffiss Air Force Base in Rome, New York, a known source of AFFF contamination.
View Article and Find Full Text PDFEMBO Rep
January 2025
Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.
Homologous recombination is a largely error-free DNA repair mechanism conserved across all domains of life and is essential for the maintenance of genome integrity. Not only are the mutations in homologous recombination repair genes probable cancer drivers, some also cause genetic disorders. In particular, mutations in the Bloom (BLM) helicase cause Bloom Syndrome, a rare autosomal recessive disorder characterized by increased sister chromatid exchanges and predisposition to a variety of cancers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!