Anti-hyperglycaemic effects of the hydroxybenzoic acid salicylate might stem from effects of the drug on mitochondrial uncoupling, activation of AMP-activated protein kinase, and inhibition of NF-κB signalling. Here, we have gauged the contribution of these effects to control of hepatocyte glucose production, comparing salicylate with inactive hydroxybenzoic acid analogues of the drug. In rat H4IIE hepatoma cells, salicylate was the only drug tested that activated AMPK. Salicylate also reduced mTOR signalling, but this property was observed widely among the analogues. In a sub-panel of analogues, salicylate alone reduced promoter activity of the key gluconeogenic enzyme glucose 6-phosphatase and suppressed basal glucose production in mouse primary hepatocytes. Both salicylate and 2,6 dihydroxybenzoic acid suppressed TNFα-induced IκB degradation, and in genetic knockout experiments, we found that the effect of salicylate on IκB degradation was AMPK-independent. Previous data also identified AMPK-independent regulation of glucose but we found that direct inhibition of neither NF-κB nor mTOR signalling suppressed glucose production, suggesting that other factors besides these cell signalling pathways may need to be considered to account for this response to salicylate. We found, for example, that H4IIE cells were exquisitely sensitive to uncoupling with modest doses of salicylate, which occurred on a similar time course to another anti-hyperglycaemic uncoupling agent 2,4-dinitrophenol, while there was no discernible effect at all of two salicylate analogues which are not anti-hyperglycaemic. This finding supports much earlier literature suggesting that salicylates exert anti-hyperglycaemic effects at least in part through uncoupling.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4894248 | PMC |
http://dx.doi.org/10.1016/j.bbadis.2016.04.015 | DOI Listing |
Endocrinology
January 2025
Department of Pediatrics, Divisions of Neonatology & Developmental Biology and Endocrinology, Neonatal Research Center of the UCLA Children's Discovery & Innovation Institute at the David Geffen School of Medicine at UCLA, Los Angeles, California 90095-1752.
To determine the basis for perinatal nutritional mismatch causing metabolic dysfunction associated steatotic liver disease (MASLD) and diabetes mellitus, we examined adult phenotype, hepatic transcriptome, and pancreatic β-islet function. In prenatal caloric restricted rat with intrauterine growth restriction (IUGR) and postnatal exposure to high fat with fructose (HFhf) or high carbohydrate (RC), we investigated male and female IUGR-Hfhf and IUGR-RC, versus HFhf and CON offspring. Males more than females displayed adiposity, glucose intolerance, insulin resistance, hyperlipidemia, hepatomegaly with hepatic steatosis.
View Article and Find Full Text PDFSci China Life Sci
January 2025
CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
Alternative treatment for the highly prevalent Helicobacter pylori infection is imperative due to rising antibiotic resistance. We unexpectedly discovered that the anti-H. pylori component in garlic is hydrogen polysulfide (HS, n⩾2), not organic polysulfides.
View Article and Find Full Text PDFLiver Int
February 2025
Department of Hepatobiliary and Digestive Surgery, University Hospital, Rennes 1 University, Rennes, France.
The discrepancy between donor organ availability and demand leads to a significant waiting-list dropout rate and mortality. Although quantitative tools such as the Donor Risk Index (DRI) help assess organ suitability, many potentially viable organs are still discarded due to the lack of universally accepted markers to predict post-transplant outcomes. Normothermic machine perfusion (NMP) offers a platform to assess viability before transplantation.
View Article and Find Full Text PDFTissue Eng Regen Med
January 2025
Department of Physiology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.
Background: Direct reprogramming of fibroblasts into chemically induced cardiomyocyte-like cells (CiCMs) through small molecules presents a promising cell source for cardiac regeneration and therapeutic development. However, the contaminating non-cardiomyocytes, primarily unconverted fibroblasts, reduce the effectiveness of CiCMs in various applications. This study investigated a metabolic selection approach using lactate to enrich CiCMs by exploiting the unique metabolic capability of cardiomyocytes to utilize lactate as an alternative energy source.
View Article and Find Full Text PDFAnal Methods
January 2025
Environmental Biotechnology Laboratory, Department of Biological Sciences, Birla Institute of Technology and Science - Pilani, Hyderabad Campus, Hyderabad, Telangana 500078, India.
The increasing global population has raised the demand for cow milk, leading to its adulteration with harmful substances, including urea and glucose, that cause damage to humans when consumed regularly. Hence, this study started with predicting urea and glucose toxicity using ProTox-III software, wherein the results revealed that urea belongs to class IV with an LD value of 6350 mg kg and glucose belongs to class VI with an LD value of 23 000 mg kg. Then, a qualitative colorimetric kit and Fourier-transform infrared (FTIR) spectroscopy were used for the preliminary detection of urea and glucose in cow milk.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!