Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The importance of neuro-immune interactions in both physiological and pathophysiological states cannot be overstated. As our appreciation for the neuroimmune nature of the brain and spinal cord grows, so does our need to extend the spatial and temporal resolution of our molecular analysis techniques. Current imaging technologies applied to investigate the actions of the neuroimmune system in both health and disease states have been adapted from the fields of immunology and neuroscience. While these classical techniques have provided immense insight into the function of the CNS, they are however, inherently limited. Thus, the development of innovative methods which overcome these limitations are crucial for imaging and quantifying acute and chronic neuroimmune responses. Therefore, this review aims to convey emerging novel and complementary imaging technologies in a form accessible to medical scientists engaging in neuroimmune research.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbi.2016.04.014 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!