Four new spectrophotometric methods were developed, applied to resolve the overlapped spectra of a ternary mixture of [aliskiren hemifumarate (ALS)-amlodipine besylate (AM)-hydrochlorothiazide (HCT)] and to determine the three drugs in pure form and in combined dosage form. Method A depends on simultaneous determination of ALS, AM and HCT using principal component regression and partial least squares chemometric methods. In Method B, a modified isosbestic spectrophotometric method was applied for the determination of the total concentration of ALS and HCT by measuring the absorbance at 274.5nm (isosbestic point, Aiso). On the other hand, the concentration of HCT in ternary mixture with ALS and AM could be calculated without interference using first derivative spectrophotometric method by measuring the amplitude at 279nm (zero crossing of ALS and zero value of AM). Thus, the content of ALS was calculated by subtraction. Method C, double divisor first derivative ratio spectrophotometry (double divisor (1)DD method), was based on that for the determination of one drug, the ratio spectra were obtained by dividing the absorption spectra of its different concentrations by the sum of the absorption spectra of the other two drugs as a double divisor. The first derivative of the obtained ratio spectra were then recorded using the appropriate smoothing factor. The amplitudes at 291nm, 380nm and 274.5nm were selected for the determination of ALS, AM and HCT in their ternary mixture, respectively. Method D was based on mean centering of ratio spectra. The mean centered values at 287, 295.5 and 269nm were recorded and used for the determination of ALS, AM and HCT, respectively. The developed methods were validated according to ICH guidelines and proved to be accurate, precise and selective. Satisfactory results were obtained by applying the proposed methods to the analysis of pharmaceutical dosage form.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.saa.2016.04.003 | DOI Listing |
ACS Nano
January 2025
Key Laboratory of Hydraulic Machinery Transients, Ministry of Education, School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China.
Metal nanocatalysts supported on oxide scaffolds have been widely used in energy storage and conversion reactions. So far, the main research is still focused on the growth, density, size, and activity enhancement of exsolved nanoparticles (NPs). However, the lack of precise regulation of the type and composition of NPs elements under reduction conditions has restricted the architectural development of in situ exsolution systems.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, 144411, India.
The fabricating of extremely effective, economical, ecologically safe, and reusable nanoparticle (NP) catalysts for the removal of water pollution is urgently needed. This study, spectroscopically optimizes the process parameters for the biogenic synthesis of AgNP catalysts using Cledrdendrum infortunatum leaf extract. The optimization of several synthesis parameters was systematically studied using UV-Vis spectroscopy to identify the ideal conditions for AgNPs formation.
View Article and Find Full Text PDFSci Rep
December 2024
School of Chemical Engineering, Iran University of Science and Technology (IUST), Tehran, Iran.
Benzene separation from hydrocarbon mixtures is a challenge in the refining and petrochemical industries. The application of liquid-liquid extraction process using ionic liquids (I.Ls) is an option for this separation.
View Article and Find Full Text PDFMembranes (Basel)
December 2024
Laboratório de Ciências Físicas, Centro de Ciência e Tecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Avenida Alberto Lamego, 2000, Campos dos Goytacazes 28013-602, RJ, Brazil.
Phase separation is essential for membrane function, and alterations in phase coexistence by membrane-interacting molecules, such as nicotine, can impair membrane stability. With the increasing use of e-cigarettes, concerns have arisen about the impact of nicotine on pulmonary surfactants. Here, we used differential scanning calorimetry (DSC), molecular dynamics (MD) simulations, and electron spin resonance (ESR) to examine nicotine's effect on the phase coexistence of two surfactant models: pure DPPC and a DPPC/POPC/POPG mixture.
View Article and Find Full Text PDFChemSusChem
December 2024
Technical University of Denmark: Danmarks Tekniske Universitet, Department of Energy Conversion and Storage, Anker Engelunds Vej 1, 2800, Kongens Lyngby, DENMARK.
Deep eutectic solvents (DESs) are an emerging class of ionic liquids with high tunability and promise for battery applications. In this study, we investigated acetamide-based DESs for Zn batteries, focusing on a synergistic mixture of two known acetamide (Ace)-based DESs: Ace4ZnCl2 and Ace4ZnTFSI2. By combining these two DESs in various ratios, we aimed to enhance ionic conductivity and optimize electrochemical performance while addressing corrosion concerns.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!