The current safety standards for radiofrequency and microwave exposure do not limit the peak power of microwave pulses for general or occupational exposures. While some biological effects, primarily the auditory effect, depend on pulsed microwaves, hazards associated with very high peak-power microwave pulses in the absence of whole-body heating are unknown. Five rhesus monkeys, Macaca mulatta, were exposed to peak-power densities of 131.8 W/cm2 (RMS) while performing a time-related behavioral task. The task was composed of a multiple schedule of reinforcement consisting of three distinct behavioral components: inter-response time, time discrimination, and fixed interval. Trained monkeys performed the multiple schedule during exposure to 1.3-GHz pulses at low pulse-repetition rates (2-32 Hz). No significant change was observed in any behavior during irradiation as compared to sham-irradiation sessions. Generalization of these findings to experimental results with higher peak-power densities, other pulse rates, different carrier frequencies, or other behaviors is limited.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/bem.2250100107 | DOI Listing |
RSC Adv
January 2025
Phenikaa University Nano Institute (PHENA), PHENIKAA University Hanoi 12116 Vietnam
In this research, the preparation of copper cobaltite (CuCoO) nanorods and its potential application in photoelectrochemical sensing platform towards ultrasensitive detection of furazolidone are reported. X-ray diffraction, Raman spectra, scanning electron microscopy, and UV-visible spectroscopy have been performed to confirm the formation, morphology, phase composition, and optical properties of CuCoO synthesized by a microwave-assisted hydrothermal method. The electrochemical characteristic parameters were calculated electrochemical impedance spectroscopy, cyclic voltammetry, differential pulse voltammetry, and chronoamperometry techniques in the absence and presence of laser light irradiation.
View Article and Find Full Text PDFSci Rep
January 2025
School of Physics, Xi'an Jiaotong University, No.28 Xianning West Road, Xi'an, 710049, Shaanxi, P. R. China.
Deep reinforcement learning is considered an effective technology in quantum optimization and can provide strategies for optimal control of complex quantum systems. More precise measurements require simulation control at multiple experimental stages. Based on this, we improved a multi-objective deep reinforcement learning method in mathematical convex optimization theory for multi-process quantum optimal control optimization.
View Article and Find Full Text PDFFront Nutr
January 2025
Department of BioSciences, School of Bio Science and Technology (SBST), Vellore Institute of Technology, Vellore, India.
Consumption of plant-based food is steadily increasing and follows an augmented trend owing to their nutritive, functional, and energy potential. Different bioactive fractions, such as phenols, flavanols, and so on, contribute highly to the nutritive profile of food and are known to have a sensitivity toward higher temperatures. This limits the applicability of traditional thermal treatments for plant products, paving the way for the advancement of innovative and non-thermal techniques such as pulsed electric field, microwave, ultrasound, cold plasma, and high-pressure processing.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Shanghai 201403, China. Electronic address:
Edible mushroom-derived polysaccharides (EMPs) have been widely used in foods, medicine, and cosmetics due to theirs' diverse and versatile biological activities. Currently, many conventional extraction methods for extracting EMPs are struggling to meet the growing demand, and the produced EMPs with poor quality and low bioactivity. Novel physical field (e.
View Article and Find Full Text PDFBiotechnol Biofuels Bioprod
January 2025
Institute for Pulsed Power and Microwave Technology (IHM), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany.
Background: The gradual extrusion of water-soluble intracellular components (such as proteins) from microalgae after pulsed electric field (PEF) treatment is a well-documented phenomenon. This could be utilized in biorefinery applications with lipid extraction taking place after such an 'incubation' period, i.e.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!