Copper nanomaterials suffer from severe oxidation problem despite the huge cost effectiveness. The effect of two different processes for conventional tube furnace heating and selective laser sintering on copper nanoparticle paste is compared in the aspects of chemical, electrical and surface morphology. The thermal behavior of the copper thin films by furnace and laser is compared by SEM, XRD, FT-IR, and XPS analysis. The selective laser sintering process ensures low annealing temperature, fast processing speed with remarkable oxidation suppression even in air environment while conventional tube furnace heating experiences moderate oxidation even in Ar environment. Moreover, the laser-sintered copper nanoparticle thin film shows good electrical property and reduced oxidation than conventional thermal heating process. Consequently, the proposed selective laser sintering process can be compatible with plastic substrate for copper based flexible electronics applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.5b12714 | DOI Listing |
Small
January 2025
Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, P. R. China.
Near-infrared (NIR)-triggered type-I photosensitizers are crucial to address the constraints of hypoxic tumor microenvironments in phototherapy; however, significant challenges remain. By selecting an electron-deficient unit, a matched energy gap in the upper-level state is instrumental in boosting the efficiency of intersystem crossing for the type-I electron transfer process. 2-Cyanothiazole, an electron acceptor, is covalently linked with N, N-diphenyl-4-(thiophen-2-yl)aniline to yield a multifunctional photosensitizer (TTNH) that exhibits intrinsic NIR absorbance and compatible T energy levels, facilitating both radiative and nonradiative transitions.
View Article and Find Full Text PDFHeliyon
January 2025
Laboratorio de Trazas elementales y Especiación, Departamento de Química Analítica e Inorgánica, Facultad de Ciencias Químicas, Universidad de Concepción, Concepción, Chile.
Quantification of modal mineralogy in drill-core samples is crucial for understanding the geology and metal deportment in a mining operation. This study assesses conventional procedures to quantify modal mineralogy, that includes an initial drill-core logging, followed by petrographic descriptions and SEM-based automated mineralogy analyses performed in selected regions of interest, against a novel approach using laser-induced breakdown spectroscopy (LIBS). Our proposed methodology aims to quantify the modal mineralogy directly in a drill-core sample, avoiding previous stages of selection and preparation of samples.
View Article and Find Full Text PDFJ Prosthet Dent
January 2025
Undergraduate student, School of Mechanical Engineering, Shandong University of Technology, Zibo, PR China.
Statement Of Problem: Infrared radiation heating (IRH) technology has been innovatively applied to the annealing of selective laser melted (SLM) cobalt chromium (Co-Cr) frameworks. However, previous studies have not reported the effects of IRH on the warping deformation and mechanical properties of these frameworks.
Purpose: The purpose of this in vitro study was to investigate the effects of IRH on the warping deformation and mechanical properties of dental SLM Co-Cr alloy and to evaluate its potential applications in dental restorations.
Angew Chem Int Ed Engl
January 2025
Brown University, Department of Chemistry, UNITED STATES OF AMERICA.
Despite major progress in the investigation of boron cluster anions, direct experimental study of neutral boron clusters remains a significant challenge because of the difficulty in size selection. Here we report a size-specific study of the neutral B9 cluster using threshold photoionization with a tunable vacuum ultraviolet free electron laser. The ionization potential of B9 is measured to be 8.
View Article and Find Full Text PDFSci Rep
January 2025
Udmurt Federal Research Center of the Ural Branch of RAS, Baramzina str. 34, Izhevsk, 426067, Russia.
Ultrasound can improve the quality of finished products by reducing porosity and enhancing microstructure in selective laser melting, directed energy deposition, and laser beam welding. This study evaluates the efficiency of ultrasound produced by a pulsed laser via the optoacoustic effect. A quantitative model of collapse of vapor-gas bubbles has been developed under the conditions of ultrasonic treatment at near resonance frequencies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!