By exciting electron-hole pairs that survive for picoseconds strong femtosecond lasers may transiently influence the bonding properties of semiconductors, causing structure changes, in particular, ultrafast melting. In order to determine the energy flow during this process in silicon we performed ab initio molecular dynamics simulations and an analysis in quasimomentum space. We found that energy flows very differently as a function of increasing excitation density, namely, mainly through long wavelength, L-point, or X-point lattice vibrations, respectively.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.116.153901DOI Listing

Publication Analysis

Top Keywords

ultrafast melting
8
quasimomentum-space image
4
image ultrafast
4
melting silicon
4
silicon exciting
4
exciting electron-hole
4
electron-hole pairs
4
pairs survive
4
survive picoseconds
4
picoseconds strong
4

Similar Publications

The Photoinduced Response of Antimony from Femtoseconds to Minutes.

Adv Mater

January 2025

Institute of Materials Physics, University of Münster, Wilhelm-Klemm-Str. 10, 48149, Münster, Germany.

As a phase change material (PCM), antimony exhibits a set of desirable properties that make it an interesting candidate for photonic memory applications. These include a large optical contrast between crystalline and amorphous solid states over a wide wavelength range. Switching between the states is possible on nanosecond timescales by applying short heating pulses.

View Article and Find Full Text PDF

Live human brain tissues provide unique opportunities for understanding the physiology and pathophysiology of synaptic transmission. Investigations have been limited to anatomy, electrophysiology, and protein localization-while crucial parameters such as synaptic vesicle dynamics were not visualized. Here we utilize zap-and-freeze time-resolved electron microscopy to overcome this hurdle.

View Article and Find Full Text PDF

Studying the properties and phase diagram of iron at high-pressure and high-temperature conditions has relevant implications for Earth's inner structure and dynamics and the temperature of the inner core boundary (ICB) at 330 GPa. Also, a hexagonal-closed packed to body-centered cubic (bcc) phase transition has been predicted by many theoretical works but observed only in a few experiments. The recent coupling of high-power laser with advanced x-ray sources from synchrotrons allows for novel approaches to address these issues.

View Article and Find Full Text PDF

Advanced Synthesis of Spherical Nucleic Acids: A Limit-Pursuing Game with Broad Implications.

Chembiochem

December 2024

Hefei National Research Center for Physical Sciences at the Microscale, Center for Bioanalytical Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, China.

Spherical nucleic acids (SNAs) consist of DNA strands arranged radially and packed densely on the surface of nanoparticles. Due to their unique properties, which are not found in naturally occurring linear or circular DNA, SNAs have gained widespread attention in fields such as sensing, nanomedicine, and colloidal assembly. The rapidly evolving applications of SNAs have driven a modernization of their syntheses to meet different needs.

View Article and Find Full Text PDF

Ultrafast dynamics and ablation mechanism in femtosecond laser irradiated Au/Ti bilayer systems.

Nanophotonics

December 2023

Laser Micro/Nano Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, P.R. China.

The significance of ultrafast laser-induced energy and mass transfer at interfaces has been growing in the field of nanoscience and technology. Nevertheless, the complexity arising from non-linear and non-equilibrium optical-thermal-mechanical interactions results in intricate transitional behaviors. This complexity presents challenges when attempting to analyze these phenomena exclusively through modeling or experimentation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!