Formulation and Stability of Solutions.

Int J Pharm Compd

Published: May 2016

Ready-to-use solutions are the most preferable and most common dosage forms for injectable and topical ophthalmic products. Drugs formulated as solution almost always have chemical and physical stability challenges as well as solubility limitations and the need to prevent inadvertent microbial contamination issues. This article, which takes us through a discussion of optimizing the physical stability of solutions, represents the first of a series of articles discussing how these challenges and issues are addressed.

Download full-text PDF

Source

Publication Analysis

Top Keywords

stability solutions
8
physical stability
8
formulation stability
4
solutions ready-to-use
4
ready-to-use solutions
4
solutions preferable
4
preferable common
4
common dosage
4
dosage forms
4
forms injectable
4

Similar Publications

Advances in nanomaterials for radiation protection in the aerospace industry: a systematic review.

Nanotechnology

December 2024

CCTS/DFQM, UFSCar - Campus Sorocaba, Rod. João Leme dos Santos km 110 - SP-264 Bairro do Itinga - Sorocaba CEP 18052-780, Sorocaba, 18052-780, BRAZIL.

Nanomaterials stand out for their exceptional properties and innovative potential, especially in applications that protect against space radiation. They offer an innovative approach to this challenge, demonstrating notable properties of radiation absorption and scattering, as well as flexibility and lightness for the development of protective clothing and equipment. This review details the use of polymeric materials, such as polyimides (PIs), which are efficient at attenuating ultraviolet (UV) radiation and atomic oxygen (AO).

View Article and Find Full Text PDF

Dry eye disease (DED) has become increasingly prevalent in the digital era, largely due to prolonged screen exposure. The excessive use of digital devices contributes to inappropriate blink frequency and dynamics, leading to ocular surface dryness and discomfort. Additionally, digital screen use has broader implications for systemic health, including visual strain, headaches, and disrupted circadian rhythms caused by blue light exposure.

View Article and Find Full Text PDF

Anion Exchange Membranes (AEMs) are promising materials for electrochemical devices, such as fuel cells and electrolyzers. However, the main drawback of AEMs is their low durability in alkaline operating conditions. A possible solution is the use of composite ionomers containing inorganic fillers stable in a basic environment.

View Article and Find Full Text PDF

The urgent need for sustainable, low-emission energy solutions has positioned proton exchange membrane fuel cells (PEMFCs) as a promising technology in clean energy conversion. Polysulfone (PSF) membranes with incorporated ionic liquid (IL) and hydrophobic polydimethylsiloxane-functionalized silica (SiO-PDMS) were developed and characterized for their potential application in PEMFCs. Using a phase inversion method, membranes with various combinations of PSFs, SiO-PDMS, and 1-butyl-3-methylimidazolium triflate (BMI.

View Article and Find Full Text PDF

System Dynamics Modeling of Scale Formation in Membrane Distillation Systems for Seawater and RO Brine Treatment.

Membranes (Basel)

November 2024

Civil and Environmental Engineering, Kookmin University, 77 Jeongneung-ro, Seongbuk-gu, Seoul 136-702, Republic of Korea.

To overcome the limitations of traditional Reverse Osmosis (RO) desalination, Membrane Distillation (MD) has gained attention as an effective solution for improving the treatment of seawater and RO brine. Despite its potential, the formation of inorganic scales, particularly calcium sulfate (CaSO), continues to pose a major challenge. This research aims to explore the scaling mechanisms in MD systems through a combination of experimental analysis and dynamic modeling.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!