A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Unique Boron Carbide Nanoparticle Nanobio Interface: Effects on Protein-RNA Interactions and 3-D Spheroid Metastatic Phenotype. | LitMetric

Aim: The effect of boron carbide (B4C) nanoparticles (NP) on protein-RNA complexes and metastatic phenotype of 3-D tumor spheroids was investigated.

Materials And Methods: Characterization was performed by transmission electron microscopy (TEM), zeta potential (ZP), 2-dimensional fluorescence difference spectroscopy (2-D FDS), gel electrophoresis, MTT, haemolysis and 3-D tumor spheroid assays.

Results: TEM showed NP were homogenous (≤50 nm) and spherical in shape. Zeta potential (ζ) of NP (-43.3) shifted upon protein:RNA interaction (+26.9). Protein:RNA complex interaction with NP was confirmed by 2-D FDS, demonstrating excitation/emission blue shift and lowered fluorescence intensity, and electrophoretic mobility shift assay (EMSA), where presence of B4C ablated visualization of the complex. B4C NP cytotoxicity was less than zinc oxide by MTT assay, protected haemolysis and effected 3-D tumor spheroid metastatic phenotype.

Conclusion: Nanobio interface of B4C nanoparticles is unique and its anticancer potential may be mediated by altering protein and RNA interactions.

Download full-text PDF

Source

Publication Analysis

Top Keywords

3-d tumor
12
boron carbide
8
nanobio interface
8
spheroid metastatic
8
metastatic phenotype
8
b4c nanoparticles
8
zeta potential
8
2-d fds
8
tumor spheroid
8
unique boron
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!