Null mutations in for pigment epithelium-derived factor (PEDF), the protein product of the SERPINF1 gene, are the cause of osteogenesis imperfecta (OI) type VI. The PEDF-knockout (KO) mouse captures crucial elements of the human disease, including diminished bone mineralization and propensity to fracture. Our group and others have demonstrated that PEDF directs human mesenchymal stem cell (hMSC) commitment to the osteoblast lineage and modulates Wnt/β-catenin signaling, a major regulator of bone development; however, the ability of PEDF to restore bone mass in a mouse model of OI type VI has not been determined. In this study, PEDF delivery increased trabecular bone volume/total volume by 52% in 6-mo-old PEDF-KO mice but not in wild-type mice. In young (19-d-old) PEDF-KO mice, PEDF restoration increased bone volume fraction by 35% and enhanced biomechanical parameters of bone plasticity. A Wnt-green fluorescent protein reporter demonstrated dynamic changes in Wnt/β-catenin signaling characterized by early activation and marked suppression during terminal differentiation of hMSCs. Continuous Wnt3a exposure impeded mineralization of hMSCs, whereas the combination of Wnt3a and PEDF potentiated mineralization. Interrogation of the PEDF sequence identified a conserved motif found in other Wnt modulators, such as the dickkopf proteins. Mutation of a single amino acid on a 34-mer PEDF peptide increased mineralization of hMSC cultures compared with the native peptide sequence. These results indicate that PEDF counters Wnt signaling to allow for osteoblast differentiation and provides a mechanistic insight into how the PEDF null state results in OI type VI.-Belinsky, G. S., Sreekumar, B., Andrejecsk, J. W., Saltzman, W. M., Gong, J., Herzog, R. I., Lin, S., Horsley, V., Carpenter, T. O., Chung, C. Pigment epithelium-derived factor restoration increases bone mass and improves bone plasticity in a model of osteogenesis imperfecta type VI via Wnt3a blockade.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4970601PMC
http://dx.doi.org/10.1096/fj.201500027RDOI Listing

Publication Analysis

Top Keywords

pigment epithelium-derived
12
epithelium-derived factor
12
bone mass
12
bone plasticity
12
osteogenesis imperfecta
12
imperfecta type
12
bone
10
pedf
10
factor restoration
8
restoration increases
8

Similar Publications

Purpose: This review explores the role of pigment epithelium-derived factor (PEDF) in retinal degenerative and vascular disorders and assesses its potential both as an adjunct to established vascular endothelial growth factor inhibiting treatments for retinal vascular diseases and as a neuroprotective therapeutic agent.

Methods: A comprehensive literature review was conducted, focusing on the neuroprotective and anti-angiogenic properties of PEDF. The review evaluated its effects on retinal health, its dysregulation in ocular disorders, and its therapeutic application in preclinical models.

View Article and Find Full Text PDF

Probing the familial ties between serpin members Kallistatin and PEDF: A comparative analysis review.

Life Sci

December 2024

Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China; China Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou 510080, China; Guangdong Province Key Laboratory of Diabetology, Guangzhou 510080, China. Electronic address:

The serine protease inhibitors (Serpins) represent a diverse protein superfamily that holds paramount significance in governing vital pathophysiological processes. Their influence on critical biological pathways renders serpins highly coveted targets for drug discovery endeavors. Among the numerous members of this family, two distinct proteins, Kallistatin (encoded by the SERPINA4 gene) and Pigment Epithelium-Derived Factor (PEDF, encoded by the SERPINF1 gene), stand out as secreted proteins that are abundantly present in peripheral blood.

View Article and Find Full Text PDF

Background: Mesenchymal stem cells may have neuroprotective and tissue regenerative capabilities and the potential to rescue retinal degeneration in chorioretinal diseases including myopic chorioretinal atrophy. Transplantation of human (allogeneic) adipose tissue-derived mesenchymal stem cell (adMSC) suspensions has been clinically conducted to treat retinal degenerative diseases. However, serious side effects including proliferative vitreoretinopathy and epiretinal membrane formation have been reported.

View Article and Find Full Text PDF

Purpose: Pigment epithelium-derived factor (PEDF) is a neurotrophic glycoprotein secreted by the retinal pigment epithelium (RPE) that supports retinal photoreceptor health. Deficits in PEDF are associated with increased inflammation and retinal degeneration in aging and diabetic retinopathy. We hypothesized that light-induced stress in C57BL/6J mice deficient in PEDF would lead to increased retinal neuronal and RPE defects, impaired expression of neurotrophic factor Insulin-like growth factor 1 (IGF-1), and overactivation of Galectin-3-mediated inflammatory signaling.

View Article and Find Full Text PDF

Multiple gene therapy as a tool for regulating the expression of molecules involved in neovascular age-related macular degeneration.

Prog Retin Eye Res

January 2025

Department of Ophthalmology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark.

Anti-vascular endothelial growth factor (VEGF) therapies have revolutionized the treatment of neovascular age-related macular degeneration (nAMD) and other retinal diseases. However, the necessity for repeated intravitreal injections and the observation of variable treatment responses calls for new treatment modalities where fewer and more effective interventions can result in a clinical effect. Gene therapy might be such an alternative, and therefore the development and clinical application of gene therapy aimed at modifying gene expression has received considerable attention.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!