Three-dimensional flower-like Bi2WO6 microspheres (3D-Bi2WO6 MSs) have been synthesized through a simple hydrothermal method. The morphology and structure of 3D-Bi2WO6 MSs were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The 3D-Bi2WO6 MSs subsequently were used to immobilize horseradish peroxidase (HRP) and fabricate a mediator-free biosensor for the detection of H2O2. Spectroscopic and electrochemical results reveal that 3D-Bi2WO6 MSs constitute an excellent immobilization matrix with biocompatibility for enzymes. Meanwhile, due to unique morphology of the flower-like microspheres, the direct electron transfer of HRP is facilitated and the prepared biosensors display good performances for the detection of H2O2 with a wide linear range, including two linear sections: 0.5-100μM (R(2)=0.9983) and 100-250μM (R(2)=0.9981), as well as an extremely low method detection limit of 0.18μM.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.msec.2016.03.079 | DOI Listing |
Mater Sci Eng C Mater Biol Appl
July 2016
School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021. PR China.
Three-dimensional flower-like Bi2WO6 microspheres (3D-Bi2WO6 MSs) have been synthesized through a simple hydrothermal method. The morphology and structure of 3D-Bi2WO6 MSs were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The 3D-Bi2WO6 MSs subsequently were used to immobilize horseradish peroxidase (HRP) and fabricate a mediator-free biosensor for the detection of H2O2.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!