Breastfeeding and Childhood IQ: The Mediating Role of Gray Matter Volume.

J Am Acad Child Adolesc Psychiatry

Washington University in St. Louis; Program in Neuroscience, Washington University in St. Louis.

Published: May 2016

Objective: A substantial body of literature has established the positive effect of breastfeeding on child developmental outcomes. There is increasing consensus that breastfed children have higher IQs after accounting for key variables, including maternal education, IQ, and socioeconomic status. Cross-sectional investigations of the effects of breastfeeding on structural brain development suggest that breastfed infants have larger whole brain, cortical, and white matter volumes. To date, few studies have related these measures of brain structure to IQ in breastfed versus nonbreastfed children in a longitudinal sample.

Method: Data were derived from the Preschool Depression Study (PDS), a prospective longitudinal study in which children and caregivers were assessed annually for 8 waves over 11 years. A subset completed neuroimaging between the ages of 9.5 and 14.11 years. A total of 148 individuals had breastfeeding data at baseline and complete data on all variables of interest, including IQ and structural neuroimaging. General linear models and process mediation models were used.

Results: Breastfed children had significantly higher IQ scores and larger whole brain, total gray matter, total cortical gray matter, and subcortical gray matter volumes compared with the nonbreastfed group in models that covaried for key variables. Subcortical gray matter volume significantly mediated the association between breastfeeding and children's IQ scores.

Conclusion: The study findings suggest that the effects of breastfeeding on child IQ are mediated through subcortical gray volume. This effect and putative mechanism is of public health significance and further supports the importance of breastfeeding in mental health promotion.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4851730PMC
http://dx.doi.org/10.1016/j.jaac.2016.02.009DOI Listing

Publication Analysis

Top Keywords

gray matter
16
subcortical gray
12
matter volume
8
breastfeeding child
8
breastfed children
8
children higher
8
key variables
8
effects breastfeeding
8
larger brain
8
matter volumes
8

Similar Publications

Impaired muscle mitochondrial oxidative capacity is associated with future cognitive impairment, and higher levels of PET and blood biomarkers of Alzheimer's disease and neurodegeneration. Here, we examine its associations with up to over a decade-long changes in brain atrophy and microstructure. Higher in vivo skeletal muscle oxidative capacity via MR spectroscopy (post-exercise recovery rate, k) is associated with less ventricular enlargement and brain aging progression, and less atrophy in specific regions, notably primary sensorimotor cortex, temporal white and gray matter, thalamus, occipital areas, cingulate cortex, and cerebellum white matter.

View Article and Find Full Text PDF

Purpose: Proton magnetic resonance spectroscopic imaging ( -MRSI) provides noninvasive spectral-spatial mapping of metabolism. However, long-standing problems in whole-brain -MRSI are spectral overlap of metabolite peaks with large lipid signal from scalp, and overwhelming water signal that distorts spectra. Fast and effective methods are needed for high-resolution -MRSI to accurately remove lipid and water signals while preserving the metabolite signal.

View Article and Find Full Text PDF

T* relaxometry of fetal brain structures using low-field (0.55T) MRI.

Magn Reson Med

December 2024

Research Department of Early Life Imaging, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK.

Purpose: Human brain development during gestation is complex, as both structure and function are rapidly forming. Structural imaging methods using MRI are well developed to explore these changes, but functional imaging tools are lacking. Low-field MRI is a promising modality to bridge this gap.

View Article and Find Full Text PDF

Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder and its underlying neuroanatomical mechanisms still remain unclear. The scaled subprofile model of principal component analysis (SSM-PCA) is a data-driven multivariate technique for capturing stable disease-related spatial covariance pattern. Here, SSM-PCA is innovatively applied to obtain robust ASD-related gray matter volume pattern associated with clinical symptoms.

View Article and Find Full Text PDF

Neural correlates of basketball proficiency: An MRI study across skill levels.

J Exerc Sci Fit

January 2025

Center for Studies of Psychological Application, South China Normal University, Guangzhou, 510631, People's Republic of China.

Background: Basketball is an attractive sport required both cooperative and antagonistic motor skills. However, the neural mechanism of basketball proficiency remains unclear. This study aimed to examine the brain functional and structural substrates underlying varying levels of basketball capacity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!