Short tandem repeats (STRs) are mutation-prone loci that span nearly 1% of the human genome. Previous studies have estimated the mutation rates of highly polymorphic STRs by using capillary electrophoresis and pedigree-based designs. Although this work has provided insights into the mutational dynamics of highly mutable STRs, the mutation rates of most others remain unknown. Here, we harnessed whole-genome sequencing data to estimate the mutation rates of Y chromosome STRs (Y-STRs) with 2-6 bp repeat units that are accessible to Illumina sequencing. We genotyped 4,500 Y-STRs by using data from the 1000 Genomes Project and the Simons Genome Diversity Project. Next, we developed MUTEA, an algorithm that infers STR mutation rates from population-scale data by using a high-resolution SNP-based phylogeny. After extensive intrinsic and extrinsic validations, we harnessed MUTEA to derive mutation-rate estimates for 702 polymorphic STRs by tracing each locus over 222,000 meioses, resulting in the largest collection of Y-STR mutation rates to date. Using our estimates, we identified determinants of STR mutation rates and built a model to predict rates for STRs across the genome. These predictions indicate that the load of de novo STR mutations is at least 75 mutations per generation, rivaling the load of all other known variant types. Finally, we identified Y-STRs with potential applications in forensics and genetic genealogy, assessed the ability to differentiate between the Y chromosomes of father-son pairs, and imputed Y-STR genotypes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4863667 | PMC |
http://dx.doi.org/10.1016/j.ajhg.2016.04.001 | DOI Listing |
Cancer Med
February 2025
Pulmonology and Thoracic Oncology Department, APHP Hôpital Tenon and Sorbonne Université, Paris, France.
Background: Real-world data regarding patients with non-small cell lung cancer (NSCLC) with EGFR exon 20 insertion (ex20ins) mutations receiving mobocertinib are limited. This study describes these patients' characteristics and outcomes.
Methods: A chart review was conducted across three countries (Canada, France, and Hong Kong), abstracting data from eligible patients (NCT05207423).
Viruses
January 2025
College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China.
Porcine reproductive and respiratory syndrome virus (PRRSV), an important pathogen affecting the pig industry, is an RNA virus with high genetic diversity. In this study, 12,299 clinical samples were collected from northern China during 2021-2023 to investigate the molecular epidemiological characteristics and genetic evolution of PRRSV. All samples were screened using qRT-PCR and further analyzed through gene and whole-genome sequencing.
View Article and Find Full Text PDFViruses
December 2024
Laboratory of Microbiology and Biochemistry (LR16SP01), Aziza Othmana Hospital, University Tunis El Manar, Tunis 1068, Tunisia.
Coronavirus disease 2019 (COVID-19) has been associated with a significant fatality rate and persistent evolution in immunocompromised patients. In this prospective study, we aimed to determine the duration of excretion of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in 37 Tunisian patients with hematological malignancies (40.5% with lymphoma and 37.
View Article and Find Full Text PDFViruses
December 2024
Instituto de Investigación Sanitaria Aragón, 50009 Zaragoza, Spain.
This study explores the relationship between specific SARS-CoV-2 mutations and obesity, focusing on how these mutations may influence COVID-19 severity and outcomes in high-BMI individuals. We analyzed 205 viral mutations from a cohort of 675 patients, examining the association of mutations with BMI, hospitalization, and mortality rates. Logistic regression models and statistical analyses were applied to assess the impact of significant mutations on clinical outcomes, including inflammatory markers and antibody levels.
View Article and Find Full Text PDFViruses
December 2024
Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, La Jolla, San Diego, CA 92093-0657, USA.
Dengue, West Nile, Zika, Yellow fever, and Japanese encephalitis viruses persist as significant global health threats. The development of new therapeutic strategies based on inhibiting essential viral enzymes or viral-host protein interactions is problematic due to the fast mutation rate and rapid emergence of drug resistance. This study focuses on the NS2B-NS3 protease as a promising target for antiviral drug development.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!