Introduction: The centrum medianum- parafascicular complex of the human thalamus has a critical influence on cortical activity and significantly influences somatosensory function, arousal, and attention. In addition to its cortical connections, this region of the intralaminar thalamic nuclei is also connected to motor areas of the basal ganglia and the brain stem.

Objective: The goal of this study was to identify movement-related neurons in the centrum medianum-parafascicular complex and analyze the changes in their activity during voluntary movements in patients with cervical dystonia.

Methods: Single-unit activity was recorded during the micro-electrode-guided surgical ablation procedures in patients with cervical dystonia. The neural responses and synchronous electromyographic signals of the neck and finger flexor muscles were simultaneously recorded.

Results: We found the following 3 types of movement-sensitive neurons in the centrum medianum-parafascicular complex: neurons that responded selectively to voluntary hand movement (hand-only neurons), neurons that selectively responded to neck movements (neck-only neurons), neurons responding to both hand and neck movements (combined neurons). We discovered the following 3 patterns of movement-related changes in neural activity: an increase in the firing rate, a reduction in the bursting activity, and short-term oscillations and synchronization with neighboring neurons. The most pronounced and prolonged responses were observed during movements involving neck muscles as well as during involuntary dystonic movements.

Conclusion: The centrum medianum-parafascicular complex of the thalamus is a component of the subcortical network that participates in motor behavior and may be involved in the pathophysiology of cervical dystonia. © 2016 International Parkinson and Movement Disorder Society.

Download full-text PDF

Source
http://dx.doi.org/10.1002/mds.26653DOI Listing

Publication Analysis

Top Keywords

centrum medianum-parafascicular
12
medianum-parafascicular complex
12
neurons
9
neurons centrum
8
patients cervical
8
cervical dystonia
8
neurons neurons
8
neck movements
8
complex
5
activity
5

Similar Publications

Introduction: The centrum medianum- parafascicular complex of the human thalamus has a critical influence on cortical activity and significantly influences somatosensory function, arousal, and attention. In addition to its cortical connections, this region of the intralaminar thalamic nuclei is also connected to motor areas of the basal ganglia and the brain stem.

Objective: The goal of this study was to identify movement-related neurons in the centrum medianum-parafascicular complex and analyze the changes in their activity during voluntary movements in patients with cervical dystonia.

View Article and Find Full Text PDF

Thiamine-like fibers in the monkey brain: an immunocytochemical study.

Life Sci

August 2006

Gemacbio S.A., Immunochemistry Department, Cenon, France.

The distribution of thiamine-immunoreactive structures was studied in the brain of the monkey using an indirect immunoperoxidase technique. Fibers containing thiamine, but no thiamine-immunoreactive cell bodies, were found. The highest density of fibers containing thiamine was observed in the pulvinar nucleus and in the region extending from the pulvinar nucleus to the caudate nucleus.

View Article and Find Full Text PDF

Folic acid in the monkey brain: an immunocytochemical study.

Neurosci Lett

May 2004

Gemacbio S.A., Immunochemistry Department, Cenon, France.

The present report describes the first visualization of folic acid-immunoreactive fibers in the mammalian central nervous system using a highly specific antiserum directed against this vitamin. The distribution of folic acid-immunoreactive structures was studied in the brainstem and thalamus of the monkey using an indirect immunoperoxidase technique. We observed fibers containing folic acid, but no folic acid-immunoreactive cell bodies were found.

View Article and Find Full Text PDF

Choline acetyltransferase (ChAT) immunocytochemistry and lectin-conjugated horseradish peroxidase (WGA-HRP) histochemistry were combined at the electron microscopic level to examine the morphology of cholinergic terminals in the canine centrum medianum-parafascicular complex (CM-Pf) and to localize cholinergic terminals making synaptic contact with retrogradely labeled CM-Pf thalamostriatal projection neurons. Following WGA-HRP injections into the caudate nucleus, CM-Pf neurons were heavily labeled with WGA-HRP reaction product. Examination with the electron microscope revealed retrogradely labeled neurons characterized by a large nucleus with deep infoldings of the nuclear envelope.

View Article and Find Full Text PDF

We combined the retrograde transport of wheat germ agglutinin conjugated with horseradish peroxidase with choline acetyltransferase immunohistochemistry to study the projections of cholinergic and non-cholinergic neurons of the upper brainstem core to rostral and caudal intralaminar thalamic nuclei, reticular thalamic complex and zona incerta in the cat. After wheat germ agglutinin-horseradish peroxidase injections in the rostral pole of the reticular thalamic nucleus, the distribution and amount of retrogradely labeled brainstem neurons were similar to those found after tracer injection in thalamic relay nuclei (see preceding paper). After wheat germ agglutinin-horseradish peroxidase injections in the caudal intralaminar centrum medianum-parafascicular complex, rostral intralaminar central lateral-paracentral wing, and zona incerta, the numbers of retrogradely labeled brainstem neurons were more than three times higher than those found after injections in thalamic relay nuclei.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!