Haploid fish embryos are important in studies regarding role of the recessive traits during early ontogeny. In fish species with the male heterogamety, androgenetic haploid embryos might be also useful tool in studies concerning role of the sex chromosomes during an embryonic development. Morphologically differentiated X and Y chromosomes have been found in a limited number of fish species including rainbow trout (Oncorhynchus mykiss Walbaum 1792). To evaluate role of the sex chromosomes during rainbow trout embryonic development, survival of the androgenetic haploids in the presence of X or Y sex chromosomes has been examined. Androgenetic haploid rainbow trout were produced by fertilization of X-irradiated eggs with spermatozoa derived from the normal males (XY) and neomales, that is, sex-reversed females (XX) to produce X- and Y-bearing haploids, and all X-bearing haploids, respectively. Survival rates of the androgenetic progenies of normal males and neomales examined during embryogenesis and at hatching did not differ significantly. However, all haploids died within next few days after hatching. Cytogenetic analysis of the androgenetic embryos confirmed their haploid status. Moreover, apart from the intact paternal chromosomes, residues of the irradiated maternal chromosomes observed as chromosome fragments were identified in some of the haploids. Provided results suggested that rainbow trout X and Y chromosomes despite morphological and genetic differences are at the early stage of differentiation and still share genetic information responsible for the proper embryonic development.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.theriogenology.2016.03.035 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!