Incompressible, homogeneous and isotropic turbulence is studied by solving the Navier-Stokes equations on a reduced set of Fourier modes, belonging to a fractal set of dimension D . By tuning the fractal dimension parameter, we study the dynamical effects of Fourier decimation on the vortex stretching mechanism and on the statistics of the velocity and the velocity gradient tensor. In particular, we show that as we move from D = 3 to D ∼ 2.8 , the statistics gradually turns into a purely Gaussian one. This result suggests that even a mild fractal mode reduction strongly depletes the stretching properties of the non-linear term of the Navier-Stokes equations and suppresses anomalous fluctuations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1140/epje/i2016-16049-x | DOI Listing |
Beijing Da Xue Xue Bao Yi Xue Ban
February 2025
Department of General Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomato-logy & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China.
Objective: The triply periodic minimal surface (TPMS) Gyroid porous scaffolds were built with identical porosity while varying pore sizes were used by fluid mechanics finite element analysis (FEA) to simulate the microenvironment. The effects of scaffolds with different pore sizes on cell adhesion, proliferation, and osteogenic differentiation were evaluated through calculating fluid velocity, wall shear stress, and permeability in the scaffolds.
Methods: Three types of gyroid porous scaffolds, with pore sizes of 400, 600 and 800 μm, were established by nTopology software.
Entropy (Basel)
January 2025
Faculty of Civil Engineering, Architecture and Environmental Engineering, Lodz University of Technology, 90-924 Łódź, Poland.
The main aim of this study is to achieve the numerical solution for the Navier-Stokes equations for incompressible, non-turbulent, and subsonic fluid flows with some Gaussian physical uncertainties. The higher-order stochastic finite volume method (SFVM), implemented according to the iterative generalized stochastic perturbation technique and the Monte Carlo scheme, are engaged for this purpose. It is implemented with the aid of the polynomial bases for the pressure-velocity-temperature (PVT) solutions, for which the weighted least squares method (WLSM) algorithm is applicable.
View Article and Find Full Text PDFLangmuir
January 2025
School of Mechanical Engineering, Shenyang University of Technology, Shenyang 110870, China.
Microscale device surface encapsulation needs to use ultrafine liquid transfer technology. This technology can transfer a liquid from a donor surface to a receptor surface in a controlled manner. However, the requirement of microscale encapsulation for liquid transfer amounts is generally at the pL level.
View Article and Find Full Text PDFEur Heart J Cardiovasc Imaging
January 2025
School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK.
Aim: To establish an imaging-based method to quantify left ventricular (LV) diastolic pressures.
Methods/results: In 115 patients suspected of coronary artery disease, LV pressure was measured by micromanometers and images by echocardiography. LV filling pressure was measured as LV pre-atrial contraction pressure (pre-A PLV).
Water Res
December 2024
School of Energy and Environment, City University of Hong Kong, Hong Kong SAR, China; State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong SAR, China. Electronic address:
Airflow models are powerful tools for ventilation design to achieve odour and corrosion mitigation in sewer networks. Currently, there lacks a model able to efficiently predict in-sewer dynamic airflows, as all available dynamic models with an acceptable accuracy are computationally demanding. In this study, a swift dynamic airflow model based on an ordinary differential equation (ODE) is derived by simplifying the one-dimensional Navier Stokes Equations (NSE), supported by the observation that the NSE solutions always display negligible spatial variations in air velocity when applied to a sewer conduit.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!