ATP-dependent Lon protease of E. coli (Ec-Lon) is a key enzyme of the quality control system of the cell proteome. Ec-Lon subunit comprises N-terminal non-catalytic region, ATPase module and proteolytic domain (serine-lysine endopeptidase). A distinctive feature of the Ec-Lon is its ability to interact with DNA, however either DNA binding site(s) or the role ofthe complex Ec-Lon · DNA have not yet been characterized. A promising tool for the study of molecular mechanisms of interaction between nucleic acids and protein ligands are known to be aptamers (small nucleic acids with high specificity to organic compounds of different nature). Ec-Lon-protease was found to form complexes with the previously obtained thrombin aptamers whose molecules comprise the duplex domains and G-quadruplex region. The aptamer affinities to the enzyme have been characterized. The synthesis of novel aptamers specific to Ec-Lon protease is planed for studying the mechanism of the enzyme-DNA complexation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1134/s1068162015060151 | DOI Listing |
Curr Microbiol
December 2024
Faculty of Science, Molecular Biology and Genetics Department, Gebze Technical University, Gebze, 41400, Kocaeli, Türkiye.
The genus Streptomyces is a group of gram-positive bacteria that exhibit a distinctive growth pattern characterised by elongated, branched hyphae. Streptomyces coelicolor A3(2), which produces at least five different antibiotics, is a model organism that is widely used in genetic studies. There are very few studies in Streptomyces on the ATP-dependent Lon protease, which has very important functions in every organism and is particularly responsible for protein homeostasis.
View Article and Find Full Text PDFJ Biol Chem
January 2025
Department of Biochemistry and Molecular Biology, Molecular and Cellular Biology Program, University of Massachusetts, Amherst, USA. Electronic address:
The ATPase Associated with diverse cellular Activities (AAA+) family of proteases play crucial roles in cellular proteolysis and stress responses. Like other AAA + proteases, the Lon protease is known to be allosterically regulated by nucleotide and substrate binding. Although it was originally classified as a DNA binding protein, the impact of DNA binding on Lon activity is unclear.
View Article and Find Full Text PDFPlant J
December 2024
Department of Biosciences, Rice University, Houston, Texas, 77005, USA.
Peroxisomes house diverse metabolic pathways that are essential for plant and animal survival, including enzymes that produce or inactivate toxic byproducts. Despite the importance of peroxisomes and their collaborations with other organelles, the mechanisms that trigger or prevent peroxisome turnover and the cellular impacts of impaired peroxisomes are incompletely understood. When Arabidopsis thaliana LON2, a peroxisomal protein with chaperone and protease capacity, is disrupted, metabolic dysfunction and protein instability in peroxisomes ensue.
View Article and Find Full Text PDFSci Rep
October 2024
Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province, Department of Neurology of the Second Affiliated Hospital, Institute of Neuroscience, Guangzhou Medical University, Ministry of Education of China, Guangzhou, China.
The LONP1 gene encodes Lon protease, which is responsible for degrading damaged or misfolded proteins and binding mitochondrial DNA. Previously, LONP1 variants have been identified in patients with cerebral, ocular, dental, auricular, and skeletal anomalies (CODAS syndrome) and mitochondrial diseases. Seizures were occasionally observed.
View Article and Find Full Text PDFInt J Mol Sci
October 2024
Institute of Human Nutrition and Food Science, University of Kiel, Hermann-Rodewald-Strasse 6, 24118 Kiel, Germany.
As a component of circulating lipoproteins, APOE binds to cell surface receptors mediating lipoprotein metabolism and cholesterol transport. A growing body of evidence, including the identification of a broad variety of cellular proteins interacting with APOE, suggests additional independent functions. Investigating cellular localization and protein-protein interactions in cultured human hepatocytes, we aimed to contribute to the elucidation of hitherto unnoted cellular functions of APOE.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!