Expression of the miR-34 family (miR-34a, -34b, -34c) is elevated in settings of heart disease, and inhibition with antimiR-34a/antimiR-34 has emerged as a promising therapeutic strategy. Under chronic cardiac disease settings, targeting the entire miR-34 family is more effective than targeting miR-34a alone. The identification of transcription factor (TF)-miRNA regulatory networks has added complexity to understanding the therapeutic potential of miRNA-based therapies. Here, we sought to determine whether antimiR-34 targets secondary miRNAs via TFs which could contribute to antimiR-34-mediated protection. Using miRNA-Seq we identified differentially regulated miRNAs in hearts from mice with cardiac pathology due to transverse aortic constriction (TAC), and focused on miRNAs which were also regulated by antimiR-34. Two clusters of stress-responsive miRNAs were classified as "pathological" and "cardioprotective," respectively. Using ChIPBase we identified 45 TF binding sites on the promoters of "pathological" and "cardioprotective" miRNAs, and 5 represented direct targets of miR-34, with the capacity to regulate other miRNAs. Knockdown studies in a cardiomyoblast cell line demonstrated that expression of 2 "pathological" miRNAs (let-7e, miR-31) was regulated by one of the identified TFs. Furthermore, by qPCR we confirmed that expression of let-7e and miR-31 was lower in hearts from antimiR-34 treated TAC mice; this may explain why targeting the entire miR-34 family is more effective than targeting miR-34a alone. Finally, we showed that Acsl4 (a common target of miR-34, let-7e and miR-31) was increased in hearts from TAC antimiR-34 treated mice. In summary, antimiR-34 regulates the expression of other miRNAs and this has implications for drug development.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5449084PMC
http://dx.doi.org/10.1080/15476286.2016.1181251DOI Listing

Publication Analysis

Top Keywords

mir-34 family
12
let-7e mir-31
12
regulatory networks
8
cardiac pathology
8
targeting entire
8
entire mir-34
8
family effective
8
effective targeting
8
targeting mir-34a
8
mirnas
8

Similar Publications

Genetic and epigenetic regulation of non-coding RNAs: Implications in cancer metastasis, stemness and drug resistance.

Pathol Res Pract

November 2024

Institute of Bioinformatics, International Technology Park, Bangalore 560066, India; Manipal Academy of Higher Education (MAHE), Manipal, Karnataka 576104, India. Electronic address:

Article Synopsis
  • * Specific ncRNAs regulate crucial signaling pathways (e.g., Wnt, Notch, Hedgehog) that affect CSC traits like self-renewal and differentiation, with some microRNAs inhibiting these processes while certain lncRNAs enhance stemness.
  • * Understanding the interplay between ncRNAs and CSCs can lead to innovative targeted therapies that address aggressive and treatment-resistant cancers, providing new avenues for effective cancer treatment.
View Article and Find Full Text PDF

Obesity is a complex disease marked by increased adiposity and impaired metabolic function. While diet and lifestyle are primary causes, endocrine-disrupting chemicals (EDCs), such as bisphenol A (BPA), significantly contribute to obesity. BPA, found in plastic consumer products, accumulates in the hypothalamus and dysregulates energy homeostasis by disrupting the neuropeptide Y (NPY)/agouti-related peptide (AgRP) and pro-opiomelanocortin (POMC) neurons.

View Article and Find Full Text PDF

Inhalation exposure to airborne fine particulate matter (aerodynamic diameter: <2.5 µm, PM) is known to cause metabolic dysfunction-associated steatohepatitis (MASH) and the associated metabolic syndrome. Hepatic lipid accumulation and inflammation are the key characteristics of MASH.

View Article and Find Full Text PDF

Despite recent advancements in cancer therapies, challenges such as severe toxic effects, non-selective targeting, resistance to chemotherapy and radiotherapy, and recurrence of metastatic tumors persist. Consequently, there has been considerable effort to explore innovative anticancer compounds, particularly in immunotherapy, which offer the potential for enhanced biosafety and efficacy in cancer prevention and treatment. One such avenue of exploration involves the miRNA-34 (miR-34) family, known for its ability to inhibit tumorigenesis across various cancers.

View Article and Find Full Text PDF

The role of MiRNA-34 family in different signaling pathways and its therapeutic options.

Gene

December 2024

Hormones Department, Medical Research and Clinical Studies Institute, and Stem Cell Lab, Centre of Excellence for Advanced SciencesNational Research Centre, 33 El-Bohouth St., Dokki, Giza 12622, Egypt.

MiRNAs are short non-coding RNA molecules that have been shown to affect a vast number of genes at the post-transcriptional level, hence regulating several signaling pathways. Because the miRNA-34 family regulates a number of different signaling pathways, including those linked to cancer, the immune system, metabolism, cellular structure, and neurological disorders, it has garnered a great deal of attention from researchers. Members of the miRNA-34 family have been shown to inhibit tumors in a variety of cancer types.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!